Fast segmentation of point clouds using a convolutional neural network for helping visually impaired people find the closest traversable region

Paúl Tinizaray, Wilbert G. Aguilar, J. Lucio
{"title":"Fast segmentation of point clouds using a convolutional neural network for helping visually impaired people find the closest traversable region","authors":"Paúl Tinizaray, Wilbert G. Aguilar, J. Lucio","doi":"10.4114/intartif.vol25iss70pp50-63","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce an approach for helping visually impaired people to find the closest-to-user traversable region. The aim of our work is to reduce the computational cost of this task. For this purpose, we develop a convolutional neural network that classifies patches to segment floor regions in a point cloud. Segmented regions are evaluated by their size and position in the point cloud to identify the closest-to-user traversable region. We evaluate our approach using the NYU-v2 dataset and find that by searching only in the lower section of the point cloud, it is possible to reduce the processing time while finding the closest floor regions. Our approach reports a better processing time than related works, making it suitable to quickly find the closest-to-user traversable region in point clouds.","PeriodicalId":176050,"journal":{"name":"Inteligencia Artif.","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inteligencia Artif.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4114/intartif.vol25iss70pp50-63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we introduce an approach for helping visually impaired people to find the closest-to-user traversable region. The aim of our work is to reduce the computational cost of this task. For this purpose, we develop a convolutional neural network that classifies patches to segment floor regions in a point cloud. Segmented regions are evaluated by their size and position in the point cloud to identify the closest-to-user traversable region. We evaluate our approach using the NYU-v2 dataset and find that by searching only in the lower section of the point cloud, it is possible to reduce the processing time while finding the closest floor regions. Our approach reports a better processing time than related works, making it suitable to quickly find the closest-to-user traversable region in point clouds.
利用卷积神经网络快速分割点云,帮助视障人士找到最近的可穿越区域
本文介绍了一种帮助视障人士寻找距离用户最近的可穿越区域的方法。我们工作的目的是减少这项任务的计算成本。为此,我们开发了一个卷积神经网络,对点云中的地板区域进行分类。根据分割区域在点云中的大小和位置来评估分割区域,以确定离用户最近的可遍历区域。我们使用NYU-v2数据集评估了我们的方法,发现仅在点云的较低部分进行搜索,可以在找到最近的地板区域的同时减少处理时间。我们的方法报告了比相关工作更好的处理时间,使其适合快速找到点云中最近的用户可遍历区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信