Reinforcement learning for spoken dialogue systems using off-policy natural gradient method

Filip Jurcícek
{"title":"Reinforcement learning for spoken dialogue systems using off-policy natural gradient method","authors":"Filip Jurcícek","doi":"10.1109/SLT.2012.6424161","DOIUrl":null,"url":null,"abstract":"Reinforcement learning methods have been successfully used to optimise dialogue strategies in statistical dialogue systems. Typically, reinforcement techniques learn on-policy i.e., the dialogue strategy is updated online while the system is interacting with a user. An alternative to this approach is off-policy reinforcement learning, which estimates an optimal dialogue strategy offline from a fixed corpus of previously collected dialogues. This paper proposes a novel off-policy reinforcement learning method based on natural policy gradients and importance sampling. The algorithm is evaluated on a spoken dialogue system in the tourist information domain. The experiments indicate that the proposed method learns a dialogue strategy, which significantly outperforms the baseline handcrafted dialogue policy.","PeriodicalId":375378,"journal":{"name":"2012 IEEE Spoken Language Technology Workshop (SLT)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2012.6424161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Reinforcement learning methods have been successfully used to optimise dialogue strategies in statistical dialogue systems. Typically, reinforcement techniques learn on-policy i.e., the dialogue strategy is updated online while the system is interacting with a user. An alternative to this approach is off-policy reinforcement learning, which estimates an optimal dialogue strategy offline from a fixed corpus of previously collected dialogues. This paper proposes a novel off-policy reinforcement learning method based on natural policy gradients and importance sampling. The algorithm is evaluated on a spoken dialogue system in the tourist information domain. The experiments indicate that the proposed method learns a dialogue strategy, which significantly outperforms the baseline handcrafted dialogue policy.
基于非策略自然梯度方法的口语对话系统强化学习
强化学习方法已成功用于统计对话系统中的对话策略优化。通常,强化技术在策略上学习,即,当系统与用户交互时在线更新对话策略。这种方法的另一种替代方法是off-policy强化学习,它从先前收集的固定对话语料库中离线估计最佳对话策略。提出了一种基于自然策略梯度和重要抽样的非策略强化学习方法。在旅游信息领域的口语对话系统上对该算法进行了评价。实验表明,该方法学习了一种对话策略,显著优于基线手工制作的对话策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信