Translation and rotation-invariant pattern recognition method using neural network with back-propagation

Y. Onodera, Hisayoshi Watanabe, A. Taguchi, N. Iijima, M. Sone, H. Mitsui
{"title":"Translation and rotation-invariant pattern recognition method using neural network with back-propagation","authors":"Y. Onodera, Hisayoshi Watanabe, A. Taguchi, N. Iijima, M. Sone, H. Mitsui","doi":"10.1109/ICCS.1992.254891","DOIUrl":null,"url":null,"abstract":"The authors present a new translation and rotation invariant pattern recognition method using a neural network. It is clear that the left-right, up-down translation or/and rotation invariance are achieved by simple preprocessing of the original patterns without improvement of the network structure. They use a three layer feed-forward network with back-propagation for learning and recognition. The proposed method has the following merits: the net size is relative small, learning and recognition is easy. Moreover, a 100 percent recognition rate is realized by the proposed method, for the alphabet.<<ETX>>","PeriodicalId":223769,"journal":{"name":"[Proceedings] Singapore ICCS/ISITA `92","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] Singapore ICCS/ISITA `92","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCS.1992.254891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The authors present a new translation and rotation invariant pattern recognition method using a neural network. It is clear that the left-right, up-down translation or/and rotation invariance are achieved by simple preprocessing of the original patterns without improvement of the network structure. They use a three layer feed-forward network with back-propagation for learning and recognition. The proposed method has the following merits: the net size is relative small, learning and recognition is easy. Moreover, a 100 percent recognition rate is realized by the proposed method, for the alphabet.<>
基于反向传播神经网络的平移和旋转不变模式识别方法
提出了一种新的基于神经网络的平移旋转不变量模式识别方法。很明显,在不改进网络结构的情况下,通过对原始模式进行简单的预处理就可以实现左右、上下平移或/和旋转不变性。他们使用一个带有反向传播的三层前馈网络来学习和识别。该方法具有网络尺寸相对较小、学习和识别容易等优点。此外,对于字母。b>,该方法实现了100%的识别率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信