Estimating Plant Centers Using A Deep Binary Classifier

Yuhao Chen, Javier Ribera, E. Delp
{"title":"Estimating Plant Centers Using A Deep Binary Classifier","authors":"Yuhao Chen, Javier Ribera, E. Delp","doi":"10.1109/SSIAI.2018.8470367","DOIUrl":null,"url":null,"abstract":"Phenotyping is the process of estimating the physical and chemical properties of a plant. Traditional phenotyping is labor intensive and time consuming. These measurements can be obtained faster by collecting aerial images with an Unmanned Aerial Vehicle (UAV) and analyzing them using modern image analysis technologies. We propose a method to estimate plant centers by classifying each pixel as a plant center or not a plant center. We then label the center of each cluster as the plant location. We studied the performance of our method on two datasets. We achieved 84% precision and 90% recall on one dataset consisting of early stage plants and 62% precision and 77% recall on another dataset consisting of later stage plants.","PeriodicalId":422209,"journal":{"name":"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSIAI.2018.8470367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Phenotyping is the process of estimating the physical and chemical properties of a plant. Traditional phenotyping is labor intensive and time consuming. These measurements can be obtained faster by collecting aerial images with an Unmanned Aerial Vehicle (UAV) and analyzing them using modern image analysis technologies. We propose a method to estimate plant centers by classifying each pixel as a plant center or not a plant center. We then label the center of each cluster as the plant location. We studied the performance of our method on two datasets. We achieved 84% precision and 90% recall on one dataset consisting of early stage plants and 62% precision and 77% recall on another dataset consisting of later stage plants.
使用深度二值分类器估计植物中心
表型是估计植物的物理和化学特性的过程。传统的表型分析是劳动密集型和耗时的。通过使用无人驾驶飞行器(UAV)收集航空图像并使用现代图像分析技术对其进行分析,可以更快地获得这些测量结果。我们提出了一种通过将每个像素分类为植物中心或非植物中心来估计植物中心的方法。然后我们将每个簇的中心标记为植物位置。我们在两个数据集上研究了我们的方法的性能。我们在一个由早期植物组成的数据集上实现了84%的精度和90%的召回率,在另一个由后期植物组成的数据集上实现了62%的精度和77%的召回率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信