Open Problems

Min Hoon Kim, P. Orson, Junghwan Park, Arunima Ray
{"title":"Open Problems","authors":"Min Hoon Kim, P. Orson, Junghwan Park, Arunima Ray","doi":"10.1093/oso/9780198841319.003.0023","DOIUrl":null,"url":null,"abstract":"Open problems in the study of topological 4-manifolds are explained in detail. An important open problem is to determine whether the disc embedding theorem and its antecedents hold for all groups; in other words, whether all groups are good. The disc embedding conjecture and the surgery conjecture are stated. The relationships between these conjectures and their various reformulations are explained. Of particular interest are the reformulations in terms of freely slicing certain infinite families of links. In particular, the surgery conjecture is true if and only if all good boundary links are freely slice. Good boundary links are the many-component analogues of Alexander polynomial one knots.","PeriodicalId":272723,"journal":{"name":"The Disc Embedding Theorem","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Disc Embedding Theorem","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198841319.003.0023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Open problems in the study of topological 4-manifolds are explained in detail. An important open problem is to determine whether the disc embedding theorem and its antecedents hold for all groups; in other words, whether all groups are good. The disc embedding conjecture and the surgery conjecture are stated. The relationships between these conjectures and their various reformulations are explained. Of particular interest are the reformulations in terms of freely slicing certain infinite families of links. In particular, the surgery conjecture is true if and only if all good boundary links are freely slice. Good boundary links are the many-component analogues of Alexander polynomial one knots.
开放的问题
详细解释了拓扑4流形研究中的开放问题。一个重要的开放问题是确定圆盘嵌入定理及其前提是否对所有群都成立;换句话说,是否所有的群体都是好的。阐述了椎间盘嵌入猜想和手术猜想。解释了这些猜想和它们的各种重新表述之间的关系。特别令人感兴趣的是在自由切割某些无限链族方面的重新表述。特别地,当且仅当所有好的边界链接都是自由切片时,手术猜想是成立的。好的边界连杆是亚历山大多项式一节的多分量类似物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信