A Machine Learning Enabled Long-Term Performance Evaluation Framework for NoCs

Jie Hou, Qi Han, M. Radetzki
{"title":"A Machine Learning Enabled Long-Term Performance Evaluation Framework for NoCs","authors":"Jie Hou, Qi Han, M. Radetzki","doi":"10.1109/MCSoC.2019.00031","DOIUrl":null,"url":null,"abstract":"The rapidly increasing transistor density enables the evolution of many-core on-chip systems. Networks-on-Chips (NoCs) are the preferred communication infrastructure for such systems. Technology scaling increases the susceptibility to failures in the NoC's components. However, such a NoC can still operate at the cost of performance degradation. Therefore, it is not sufficient to analyze the performance and reliability of a NoC separately. In this paper, we propose a machine learning enabled performability evaluation framework to treat both aspects together. It applies Markov reward models. In addition, it leverages machine learning techniques to obtain different performance metrics under consideration of faulty routers and various simulation parameters quickly, which is a challenging task in an analytical manner. Moreover, we use a mesh-based NoC to demonstrate our methodology. Long-term performances of mesh 8x8 under XY and fault-tolerant negative-first routing algorithms are evaluated.","PeriodicalId":104240,"journal":{"name":"2019 IEEE 13th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 13th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSoC.2019.00031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The rapidly increasing transistor density enables the evolution of many-core on-chip systems. Networks-on-Chips (NoCs) are the preferred communication infrastructure for such systems. Technology scaling increases the susceptibility to failures in the NoC's components. However, such a NoC can still operate at the cost of performance degradation. Therefore, it is not sufficient to analyze the performance and reliability of a NoC separately. In this paper, we propose a machine learning enabled performability evaluation framework to treat both aspects together. It applies Markov reward models. In addition, it leverages machine learning techniques to obtain different performance metrics under consideration of faulty routers and various simulation parameters quickly, which is a challenging task in an analytical manner. Moreover, we use a mesh-based NoC to demonstrate our methodology. Long-term performances of mesh 8x8 under XY and fault-tolerant negative-first routing algorithms are evaluated.
基于机器学习的石油公司长期绩效评估框架
快速增加的晶体管密度使多核片上系统的发展成为可能。片上网络(noc)是这类系统的首选通信基础设施。技术扩展增加了NoC组件故障的易感性。然而,这样的NoC仍然会以性能下降为代价。因此,单独分析NoC的性能和可靠性是不够的。在本文中,我们提出了一个支持机器学习的性能评估框架来同时处理这两个方面。它应用了马尔可夫奖励模型。此外,它利用机器学习技术在考虑故障路由器和各种仿真参数的情况下快速获得不同的性能指标,这在分析方式上是一项具有挑战性的任务。此外,我们使用基于网格的NoC来演示我们的方法。对mesh 8x8在XY和容错负优先路由算法下的长期性能进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信