Variational low rank multinomials for collaborative filtering with side-information

Ehtsham Elahi, Wei Wang, Dave Ray, Aish Fenton, T. Jebara
{"title":"Variational low rank multinomials for collaborative filtering with side-information","authors":"Ehtsham Elahi, Wei Wang, Dave Ray, Aish Fenton, T. Jebara","doi":"10.1145/3298689.3347036","DOIUrl":null,"url":null,"abstract":"We are interested in Bayesian models for collaborative filtering that incorporate side-information or metadata about items in addition to user-item interaction data. We present a simple and flexible framework to build models for this task that exploit the low-rank structure in user-item interaction datasets. Although the resulting models are non-conjugate, we develop an efficient technique for approximating posteriors over model parameters using variational inference. We borrow the \"re-parameterization trick\" from Bayesian deep learning literature to enable variational inference in our models. The resulting approximate Bayesian inference algorithm is scalable and can handle large scale datasets. We demonstrate our ideas on three real world datasets where we show competitive performance against widely used baselines.","PeriodicalId":215384,"journal":{"name":"Proceedings of the 13th ACM Conference on Recommender Systems","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3298689.3347036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We are interested in Bayesian models for collaborative filtering that incorporate side-information or metadata about items in addition to user-item interaction data. We present a simple and flexible framework to build models for this task that exploit the low-rank structure in user-item interaction datasets. Although the resulting models are non-conjugate, we develop an efficient technique for approximating posteriors over model parameters using variational inference. We borrow the "re-parameterization trick" from Bayesian deep learning literature to enable variational inference in our models. The resulting approximate Bayesian inference algorithm is scalable and can handle large scale datasets. We demonstrate our ideas on three real world datasets where we show competitive performance against widely used baselines.
带副信息的变分低秩多项式协同过滤
我们对协同过滤的贝叶斯模型感兴趣,除了用户-项目交互数据外,该模型还包含关于项目的侧信息或元数据。我们提出了一个简单而灵活的框架来构建该任务的模型,该框架利用用户-项目交互数据集中的低秩结构。虽然得到的模型是非共轭的,但我们开发了一种使用变分推理在模型参数上近似后验的有效技术。我们借用了贝叶斯深度学习文献中的“重新参数化技巧”来实现我们模型中的变分推理。所得到的近似贝叶斯推理算法具有可扩展性,可以处理大规模数据集。我们在三个真实世界的数据集上展示了我们的想法,在这些数据集上,我们展示了与广泛使用的基线相比的竞争性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信