Ehtsham Elahi, Wei Wang, Dave Ray, Aish Fenton, T. Jebara
{"title":"Variational low rank multinomials for collaborative filtering with side-information","authors":"Ehtsham Elahi, Wei Wang, Dave Ray, Aish Fenton, T. Jebara","doi":"10.1145/3298689.3347036","DOIUrl":null,"url":null,"abstract":"We are interested in Bayesian models for collaborative filtering that incorporate side-information or metadata about items in addition to user-item interaction data. We present a simple and flexible framework to build models for this task that exploit the low-rank structure in user-item interaction datasets. Although the resulting models are non-conjugate, we develop an efficient technique for approximating posteriors over model parameters using variational inference. We borrow the \"re-parameterization trick\" from Bayesian deep learning literature to enable variational inference in our models. The resulting approximate Bayesian inference algorithm is scalable and can handle large scale datasets. We demonstrate our ideas on three real world datasets where we show competitive performance against widely used baselines.","PeriodicalId":215384,"journal":{"name":"Proceedings of the 13th ACM Conference on Recommender Systems","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3298689.3347036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
We are interested in Bayesian models for collaborative filtering that incorporate side-information or metadata about items in addition to user-item interaction data. We present a simple and flexible framework to build models for this task that exploit the low-rank structure in user-item interaction datasets. Although the resulting models are non-conjugate, we develop an efficient technique for approximating posteriors over model parameters using variational inference. We borrow the "re-parameterization trick" from Bayesian deep learning literature to enable variational inference in our models. The resulting approximate Bayesian inference algorithm is scalable and can handle large scale datasets. We demonstrate our ideas on three real world datasets where we show competitive performance against widely used baselines.