{"title":"Extending ML-OARSMT to Net Open Locator with Efficient and Effective Boolean Operations","authors":"B. Jiang, Hung-Ming Chen","doi":"10.1145/3240765.3240807","DOIUrl":null,"url":null,"abstract":"Multi-layer obstacle-avoiding rectilinear Steiner minimal tree (ML-OARSMT) problem has been extensively studied in recent years. In this work, we consider a variant of ML-OARSMT problem and extend the applicability to the net open location finder. Since ECO or router limitations may cause the open nets, we come up with a framework to detect and reconnect existing nets to resolve the net opens. Different from prior connection graph based approach, we propose a technique by applying efficient Boolean operations to repair net opens. Our method has good quality and scalability and is highly parallelizable. Compared with the results of ICCAD-2017 contest, we show that our proposed algorithm can achieve the smallest cost with 4.81 speedup in average than the top-3 winners.","PeriodicalId":413037,"journal":{"name":"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"2012 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240765.3240807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Multi-layer obstacle-avoiding rectilinear Steiner minimal tree (ML-OARSMT) problem has been extensively studied in recent years. In this work, we consider a variant of ML-OARSMT problem and extend the applicability to the net open location finder. Since ECO or router limitations may cause the open nets, we come up with a framework to detect and reconnect existing nets to resolve the net opens. Different from prior connection graph based approach, we propose a technique by applying efficient Boolean operations to repair net opens. Our method has good quality and scalability and is highly parallelizable. Compared with the results of ICCAD-2017 contest, we show that our proposed algorithm can achieve the smallest cost with 4.81 speedup in average than the top-3 winners.