Menghong Feng, Noman Bashir, P. Shenoy, David E. Irwin, B. Kosanovic
{"title":"SunDown: Model-driven Per-Panel Solar Anomaly Detection for Residential Arrays","authors":"Menghong Feng, Noman Bashir, P. Shenoy, David E. Irwin, B. Kosanovic","doi":"10.1145/3378393.3402257","DOIUrl":null,"url":null,"abstract":"Solar arrays often experience faults that go undetected for long periods of time, resulting in generation and revenue losses. In this paper, we present SunDown, a sensorless approach for detecting per-panel faults in solar arrays. SunDown's model-driven approach leverages correlations between the power produced by adjacent panels to detect deviations from expected behavior, can handle concurrent faults in multiple panels, and performs anomaly classification to determine probable causes. Using two years of solar data from a real home and a manually generated dataset of solar faults, we show that our approach is able to detect and classify faults, including from snow, leaves and debris, and electrical failures with 99.13% accuracy, and can detect concurrent faults with 97.2% accuracy.","PeriodicalId":176951,"journal":{"name":"Proceedings of the 3rd ACM SIGCAS Conference on Computing and Sustainable Societies","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd ACM SIGCAS Conference on Computing and Sustainable Societies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3378393.3402257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Solar arrays often experience faults that go undetected for long periods of time, resulting in generation and revenue losses. In this paper, we present SunDown, a sensorless approach for detecting per-panel faults in solar arrays. SunDown's model-driven approach leverages correlations between the power produced by adjacent panels to detect deviations from expected behavior, can handle concurrent faults in multiple panels, and performs anomaly classification to determine probable causes. Using two years of solar data from a real home and a manually generated dataset of solar faults, we show that our approach is able to detect and classify faults, including from snow, leaves and debris, and electrical failures with 99.13% accuracy, and can detect concurrent faults with 97.2% accuracy.