A Network Gene-Based Framework for Detecting Advanced Persistent Threats

Y. Wang, Yongjun Wang, J. Liu, Zhijian Huang
{"title":"A Network Gene-Based Framework for Detecting Advanced Persistent Threats","authors":"Y. Wang, Yongjun Wang, J. Liu, Zhijian Huang","doi":"10.1109/3PGCIC.2014.41","DOIUrl":null,"url":null,"abstract":"Advanced Persistent Threat (APT) poses a serious threat to cyber security, and its unique high unpredictability, deep concealment and grave harmfulness make the traditional network monitoring technology facing unprecedented challenges in the background of massive and complicated network traffic. This paper aimed for the urgent demand of APT network monitoring. Relying on the rapid development of big data analysis and cloud computing technology, to draw lessons from biology gene concept, we put forward a new connotation of the network gene to depict the semantic-rich behavior characteristics pattern of network applications. Through the organic combination of network protocol reverse analysis and the network data stream processing technology, we established a set of basic theories and technical architecture of network gene construction and calculation, forming a new detection framework for APTs to support the construction of intrusion-tolerant network ecological environment.","PeriodicalId":395610,"journal":{"name":"2014 Ninth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Ninth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3PGCIC.2014.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Advanced Persistent Threat (APT) poses a serious threat to cyber security, and its unique high unpredictability, deep concealment and grave harmfulness make the traditional network monitoring technology facing unprecedented challenges in the background of massive and complicated network traffic. This paper aimed for the urgent demand of APT network monitoring. Relying on the rapid development of big data analysis and cloud computing technology, to draw lessons from biology gene concept, we put forward a new connotation of the network gene to depict the semantic-rich behavior characteristics pattern of network applications. Through the organic combination of network protocol reverse analysis and the network data stream processing technology, we established a set of basic theories and technical architecture of network gene construction and calculation, forming a new detection framework for APTs to support the construction of intrusion-tolerant network ecological environment.
基于网络基因的高级持续威胁检测框架
高级持续性威胁(Advanced Persistent Threat, APT)对网络安全构成严重威胁,其独特的高不可预测性、深隐蔽性和严重危害性使传统的网络监控技术在海量复杂的网络流量背景下面临前所未有的挑战。本文针对APT网络监控的迫切需求。依托大数据分析和云计算技术的快速发展,借鉴生物学基因概念,提出了网络基因的新内涵,以刻画网络应用中语义丰富的行为特征模式。通过网络协议反向分析与网络数据流处理技术的有机结合,建立了一套网络基因构建与计算的基本理论和技术架构,形成了新的apt检测框架,支持构建抗入侵网络生态环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信