{"title":"A Formal Sensitivity Analysis for Laguerre Based Predictive Functional Control","authors":"Muhammad Abdullah, John Anthony Rossiter","doi":"10.1109/CONTROL.2018.8516849","DOIUrl":null,"url":null,"abstract":"A Laguerre Predictive Functional Control (LPFC) is a simple input shaping method, which can improve the prediction consistency and closed-loop performance of the conventional approach (PFC). However, it is well-known that an input shaping method, in general, will affect the loop sensitivity of a system. Hence, this paper presents a formal sensitivity analysis of LPFC by considering the effect of noise, unmeasured disturbance and parameter uncertainty. Sensitivity plots from bode diagrams and closed-loop simulation are used to illustrate the controller robustness and indicate that although LPFC often provides a better closed-loop tracking response and disturbance rejection, this may involve some trade-off with the sensitivity to noise and parameter uncertainty. Finally, to validate the practicality of the results, the sensitivity of the LPFC control law is illustrated on real-time laboratory hardware.","PeriodicalId":266112,"journal":{"name":"2018 UKACC 12th International Conference on Control (CONTROL)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 UKACC 12th International Conference on Control (CONTROL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONTROL.2018.8516849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A Laguerre Predictive Functional Control (LPFC) is a simple input shaping method, which can improve the prediction consistency and closed-loop performance of the conventional approach (PFC). However, it is well-known that an input shaping method, in general, will affect the loop sensitivity of a system. Hence, this paper presents a formal sensitivity analysis of LPFC by considering the effect of noise, unmeasured disturbance and parameter uncertainty. Sensitivity plots from bode diagrams and closed-loop simulation are used to illustrate the controller robustness and indicate that although LPFC often provides a better closed-loop tracking response and disturbance rejection, this may involve some trade-off with the sensitivity to noise and parameter uncertainty. Finally, to validate the practicality of the results, the sensitivity of the LPFC control law is illustrated on real-time laboratory hardware.