To avoid unmoving and moving obstacles using MKBC algorithm Path planning

R. Kulic, Z. Vukic
{"title":"To avoid unmoving and moving obstacles using MKBC algorithm Path planning","authors":"R. Kulic, Z. Vukic","doi":"10.1109/ICMECH.2009.4957117","DOIUrl":null,"url":null,"abstract":"The problem of path planning for the autonomous vehicle in environment with moving and stationary obstacles is considered. An algorithm based on modified Kohonen rule and behavioural cloning (MKBC) is developed. The MKBC algorithm, as improvement of RBF neural network, uses the training values as weighting values, rather then values from the previous time instance. This enables an intelligent system to learn from examples (operator's demonstrations) to control a robot vehicle, in this case, to avoid stationary or moving obstacle. Important characteristic of the MKBC algorithm is polynomial complexity, while most other path planning algorithms are exponential. Experiments determined that it is robust to parameter change and suitable for real time application.","PeriodicalId":414967,"journal":{"name":"2009 IEEE International Conference on Mechatronics","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Mechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMECH.2009.4957117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of path planning for the autonomous vehicle in environment with moving and stationary obstacles is considered. An algorithm based on modified Kohonen rule and behavioural cloning (MKBC) is developed. The MKBC algorithm, as improvement of RBF neural network, uses the training values as weighting values, rather then values from the previous time instance. This enables an intelligent system to learn from examples (operator's demonstrations) to control a robot vehicle, in this case, to avoid stationary or moving obstacle. Important characteristic of the MKBC algorithm is polynomial complexity, while most other path planning algorithms are exponential. Experiments determined that it is robust to parameter change and suitable for real time application.
利用MKBC算法对不动障碍物和移动障碍物进行路径规划
研究了自动驾驶汽车在移动和静止障碍物环境下的路径规划问题。提出了一种基于修正Kohonen规则和行为克隆(MKBC)的算法。MKBC算法作为RBF神经网络的改进,使用训练值作为加权值,而不是使用前一个时间实例的值。这使智能系统能够从示例(操作员演示)中学习控制机器人车辆,在这种情况下,避开静止或移动的障碍物。MKBC算法的重要特点是多项式复杂度,而其他路径规划算法大多是指数复杂度。实验结果表明,该方法对参数变化具有较强的鲁棒性,适合实时应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信