An analysis of evolutionary gradient search

D. Arnold
{"title":"An analysis of evolutionary gradient search","authors":"D. Arnold","doi":"10.1109/CEC.2004.1330836","DOIUrl":null,"url":null,"abstract":"Evolution strategies and gradient strategies are two different approaches to continuous optimization. Salomon's evolutionary gradient search procedure is a hybrid strategy that obtains gradient estimates by borrowing the idea of random variations from evolutionary computation. The present paper applies successful tools and ideas from the theory of evolution strategies to the evolutionary gradient search framework. Performance and the influence of its parameters. Comparisons with the (/spl mu///spl mu/,/spl lambda/)-ES are presented, and the issue of genetic repair in evolutionary gradient search is discussed. The practically relevant problem of noisy objective function measurements is addressed, and recommendations with regard to the setting of strategy parameters are made.","PeriodicalId":152088,"journal":{"name":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2004.1330836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Evolution strategies and gradient strategies are two different approaches to continuous optimization. Salomon's evolutionary gradient search procedure is a hybrid strategy that obtains gradient estimates by borrowing the idea of random variations from evolutionary computation. The present paper applies successful tools and ideas from the theory of evolution strategies to the evolutionary gradient search framework. Performance and the influence of its parameters. Comparisons with the (/spl mu///spl mu/,/spl lambda/)-ES are presented, and the issue of genetic repair in evolutionary gradient search is discussed. The practically relevant problem of noisy objective function measurements is addressed, and recommendations with regard to the setting of strategy parameters are made.
进化梯度搜索的分析
进化策略和梯度策略是两种不同的连续优化方法。所罗门的进化梯度搜索程序是一种混合策略,通过借用进化计算中的随机变化思想来获得梯度估计。本文将进化策略理论中成功的工具和思想应用到进化梯度搜索框架中。性能及其参数的影响。并与(/spl mu///spl mu/,/spl lambda/)-ES进行了比较,讨论了进化梯度搜索中的基因修复问题。讨论了噪声目标函数测量的实际相关问题,并对策略参数的设置提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信