The White House Problem Revisited: MCMC with the Metropolis–Hastings Algorithm

T. Donovan, R. Mickey
{"title":"The White House Problem Revisited: MCMC with the Metropolis–Hastings Algorithm","authors":"T. Donovan, R. Mickey","doi":"10.1093/OSO/9780198841296.003.0015","DOIUrl":null,"url":null,"abstract":"The “White House Problem” of Chapter 10 is revisited in this chapter. Markov Chain Monte Carlo (MCMC) is used to build the posterior distribution of the unknown parameter p, the probability that a famous person could gain access to the White House without invitation. The chapter highlights the Metropolis–Hastings algorithm in MCMC analysis, describing the process step by step. The posterior distribution generated in Chapter 10 using the beta-binomial conjugate is compared with the MCMC posterior distribution to show how successful the MCMC method can be. By the end of this chapter, the reader will have a firm understanding of the following concepts: Monte Carlo, Markov chain, Metropolis–Hastings algorithm, Metropolis–Hastings random walk, and Metropolis–Hastings independence sampler.","PeriodicalId":285230,"journal":{"name":"Bayesian Statistics for Beginners","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Statistics for Beginners","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/OSO/9780198841296.003.0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The “White House Problem” of Chapter 10 is revisited in this chapter. Markov Chain Monte Carlo (MCMC) is used to build the posterior distribution of the unknown parameter p, the probability that a famous person could gain access to the White House without invitation. The chapter highlights the Metropolis–Hastings algorithm in MCMC analysis, describing the process step by step. The posterior distribution generated in Chapter 10 using the beta-binomial conjugate is compared with the MCMC posterior distribution to show how successful the MCMC method can be. By the end of this chapter, the reader will have a firm understanding of the following concepts: Monte Carlo, Markov chain, Metropolis–Hastings algorithm, Metropolis–Hastings random walk, and Metropolis–Hastings independence sampler.
白宫问题重访:MCMC与Metropolis-Hastings算法
第10章的“白宫问题”将在本章中重新讨论。马尔可夫链蒙特卡罗(MCMC)用于建立未知参数p的后验分布,p是一个名人不受邀请进入白宫的概率。本章重点介绍了MCMC分析中的Metropolis-Hastings算法,逐步描述了这一过程。将第10章中使用β -二项共轭生成的后验分布与MCMC后验分布进行比较,以显示MCMC方法的成功程度。在本章结束时,读者将对以下概念有一个牢固的理解:蒙特卡罗,马尔可夫链,Metropolis-Hastings算法,Metropolis-Hastings随机漫步和Metropolis-Hastings独立采样器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信