Evaluating Forecasting, Knowledge, and Visual Analytics

Yafeng Lu, Michael Steptoe, Verica Buchanan, Nancy J. Cooke, Ross Maciejewski
{"title":"Evaluating Forecasting, Knowledge, and Visual Analytics","authors":"Yafeng Lu, Michael Steptoe, Verica Buchanan, Nancy J. Cooke, Ross Maciejewski","doi":"10.1109/TREX53765.2021.00011","DOIUrl":null,"url":null,"abstract":"In this paper, we explore the intersection of knowledge and the forecasting accuracy of humans when supported by visual analytics. We have recruited 40 experts in machine learning and trained them in the use of a box office forecasting visual analytics system. Our goal was to explore the impact of visual analytics and knowledge in human-machine forecasting. This paper reports on how participants explore and reason with data and develop a forecast when provided with a predictive model of middling performance (R2 ≈ .7). We vary the knowledge base of the participants through training, compare the forecasts to the baseline model, and discuss performance in the context of previous work on algorithmic aversion and trust.","PeriodicalId":345585,"journal":{"name":"2021 IEEE Workshop on TRust and EXpertise in Visual Analytics (TREX)","volume":"2016 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Workshop on TRust and EXpertise in Visual Analytics (TREX)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TREX53765.2021.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we explore the intersection of knowledge and the forecasting accuracy of humans when supported by visual analytics. We have recruited 40 experts in machine learning and trained them in the use of a box office forecasting visual analytics system. Our goal was to explore the impact of visual analytics and knowledge in human-machine forecasting. This paper reports on how participants explore and reason with data and develop a forecast when provided with a predictive model of middling performance (R2 ≈ .7). We vary the knowledge base of the participants through training, compare the forecasts to the baseline model, and discuss performance in the context of previous work on algorithmic aversion and trust.
评估预测、知识和可视化分析
在本文中,我们探讨了在视觉分析的支持下,知识和人类预测准确性的交集。我们招募了40位机器学习方面的专家,训练他们使用票房预测可视化分析系统。我们的目标是探索视觉分析和知识在人机预测中的影响。本文报告了参与者在提供中等表现(R2≈.7)的预测模型时如何探索和推理数据并制定预测。我们通过培训改变参与者的知识库,将预测与基线模型进行比较,并在之前关于算法厌恶和信任的工作背景下讨论性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信