Review of Some Robust Estimators in Multiple Linear Regressions in the Presence of Outlier(s)

A. T., Oyeyemi G.M., Olaniran R.O., Adetunji K.O.
{"title":"Review of Some Robust Estimators in Multiple Linear Regressions in the Presence of Outlier(s)","authors":"A. T., Oyeyemi G.M., Olaniran R.O., Adetunji K.O.","doi":"10.52589/ajmss-ec8ewxul","DOIUrl":null,"url":null,"abstract":"Linear regression has been one of the most important statistical data analysis tools. Multiple regression is a type of regression where the dependent variable shows a linear relationship with two or more independent variables. OLS estimate is extremely sensitive to unusual observations (outliers), with low breakdown point and low efficiency. This paper reviews and compares some of the existing robust methods (Least Absolute Deviation, Huber M-Estimator, Bisquare M-Estimator, MM Estimator, Least Median Square, Least Trimmed Square, S-Estimator); a simulation method is used to compare the selected existing methods. It was concluded based on the results that for y direction outlier, the best estimator in terms of high efficiency and breakdown point of at most 0.3 is MM; for x direction outlier, the best estimator in term breakdown point of at most 0.4 is S; for x, y direction outlier, the best estimator in terms of high efficiency and breakdown point of at most 0.2 is MM.","PeriodicalId":251990,"journal":{"name":"African Journal of Mathematics and Statistics Studies","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"African Journal of Mathematics and Statistics Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52589/ajmss-ec8ewxul","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Linear regression has been one of the most important statistical data analysis tools. Multiple regression is a type of regression where the dependent variable shows a linear relationship with two or more independent variables. OLS estimate is extremely sensitive to unusual observations (outliers), with low breakdown point and low efficiency. This paper reviews and compares some of the existing robust methods (Least Absolute Deviation, Huber M-Estimator, Bisquare M-Estimator, MM Estimator, Least Median Square, Least Trimmed Square, S-Estimator); a simulation method is used to compare the selected existing methods. It was concluded based on the results that for y direction outlier, the best estimator in terms of high efficiency and breakdown point of at most 0.3 is MM; for x direction outlier, the best estimator in term breakdown point of at most 0.4 is S; for x, y direction outlier, the best estimator in terms of high efficiency and breakdown point of at most 0.2 is MM.
存在离群值的多元线性回归中若干鲁棒估计的综述
线性回归已经成为最重要的统计数据分析工具之一。多元回归是一种回归,其中因变量与两个或多个自变量显示线性关系。OLS估计对异常观测值(异常值)极为敏感,击穿点低,效率低。本文综述并比较了现有的一些鲁棒方法(最小绝对偏差、Huber m估计、bissquared m估计、MM估计、最小中值二乘、最小裁剪二乘、s估计);采用仿真方法对所选的现有方法进行了比较。结果表明:对于y方向离群值,在效率和击穿点不超过0.3的情况下,最佳估计量为MM;对于x方向离群值,项击穿点不超过0.4的最佳估计量为S;对于x、y方向的离群值,在效率和击穿点不超过0.2的情况下,最好的估计是MM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信