Shirong Huang, A. Croy, A. Bierling, L. Panes-Ruiz, B. Ibarlucea, G. Cuniberti
{"title":"Machine Learning-enabled Biomimetic Electronic Olfaction Using Graphene Single-channel Sensors","authors":"Shirong Huang, A. Croy, A. Bierling, L. Panes-Ruiz, B. Ibarlucea, G. Cuniberti","doi":"10.1109/ISOEN54820.2022.9789605","DOIUrl":null,"url":null,"abstract":"Olfaction is an evolutionary old sensory system, yet it provides sophisticated access to information about our surroundings. Inspired by the biological example, electronic noses (e-noses) in combination with efficient machine learning techniques aim to achieve similar performance and thus digitize the sense of smell. Despite the significant progress of e-noses, their development remains challenging due to the complex layout design of sensor arrays with a multitude of receptor types or sensor materials, and the need for high working temperature. In the current work, we present the discriminative recognition of odors utilizing graphene single-channel nanosensor-based electronic olfaction in conjunction with machine learning techniques. Multiple transient features extracted from the sensing response profile are employed to represent each odor and used as a fingerprint of odors. The developed electronic olfaction prototype exhibits excellent odor identification performance at room temperature, maximizing the obtained results from a single nanosensor. The developed platform may facilitate miniaturization of e-nose systems, digitization of odors, and distinction of volatile organic compounds (VOCs) in various emerging applications.","PeriodicalId":427373,"journal":{"name":"2022 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOEN54820.2022.9789605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Olfaction is an evolutionary old sensory system, yet it provides sophisticated access to information about our surroundings. Inspired by the biological example, electronic noses (e-noses) in combination with efficient machine learning techniques aim to achieve similar performance and thus digitize the sense of smell. Despite the significant progress of e-noses, their development remains challenging due to the complex layout design of sensor arrays with a multitude of receptor types or sensor materials, and the need for high working temperature. In the current work, we present the discriminative recognition of odors utilizing graphene single-channel nanosensor-based electronic olfaction in conjunction with machine learning techniques. Multiple transient features extracted from the sensing response profile are employed to represent each odor and used as a fingerprint of odors. The developed electronic olfaction prototype exhibits excellent odor identification performance at room temperature, maximizing the obtained results from a single nanosensor. The developed platform may facilitate miniaturization of e-nose systems, digitization of odors, and distinction of volatile organic compounds (VOCs) in various emerging applications.