Incremental linearization: A practical approach to satisfiability modulo nonlinear arithmetic and transcendental functions

A. Cimatti, A. Griggio, A. Irfan, Marco Roveri, R. Sebastiani
{"title":"Incremental linearization: A practical approach to satisfiability modulo nonlinear arithmetic and transcendental functions","authors":"A. Cimatti, A. Griggio, A. Irfan, Marco Roveri, R. Sebastiani","doi":"10.1109/SYNASC.2018.00016","DOIUrl":null,"url":null,"abstract":"Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability of a first-order formula with respect to some theory or combination of theories. In this paper, we overview our recent approach called Incremental Linearization, which successfully tackles the problems of SMT over the theories of nonlinear arithmetic over the reals (NRA), nonlinear arithmetic over the integers (NIA) and their combination, and of NRA augmented with transcendental (exponential and trigonometric) functions (NTA). Moreover, we showcase some of the experimental results and outline interesting future directions.","PeriodicalId":273805,"journal":{"name":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2018.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability of a first-order formula with respect to some theory or combination of theories. In this paper, we overview our recent approach called Incremental Linearization, which successfully tackles the problems of SMT over the theories of nonlinear arithmetic over the reals (NRA), nonlinear arithmetic over the integers (NIA) and their combination, and of NRA augmented with transcendental (exponential and trigonometric) functions (NTA). Moreover, we showcase some of the experimental results and outline interesting future directions.
增量线性化:可满足模非线性算法与超越函数的实用方法
可满足模数理论(SMT)是确定一阶公式相对于某些理论或理论组合的可满足性的问题。在本文中,我们概述了我们最近的方法,称为增量线性化,它成功地解决了基于实数非线性算法(NRA)理论的SMT问题,整数非线性算法(NIA)及其组合,以及超越(指数和三角)函数增广的NRA (NTA)。此外,我们还展示了一些实验结果,并概述了有趣的未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信