Automatic Ontology Identification for Reuse

M. Speretta, S. Gauch
{"title":"Automatic Ontology Identification for Reuse","authors":"M. Speretta, S. Gauch","doi":"10.1109/WI.2007.24","DOIUrl":null,"url":null,"abstract":"The increasing interest in the Semantic Web is producing a growing number of publicly available domain ontologies. These ontologies are a rich source of information that could be very helpful during the process of engineering other domain ontologies. We present an automatic technique that, given a set of Web documents, selects appropriate domain ontologies from a collection of pre-existing ontologies. We empirically compare an ontology match score that is based on statistical techniques with simple keyword matching algorithms. The algorithms were tested on a set of 183 publicly available ontologies and documents representing ten different domains. Our algorithm was able to select the correct domain ontology as the top ranked ontology 8 out of 10 times.","PeriodicalId":192501,"journal":{"name":"IEEE/WIC/ACM International Conference on Web Intelligence (WI'07)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/WIC/ACM International Conference on Web Intelligence (WI'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2007.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The increasing interest in the Semantic Web is producing a growing number of publicly available domain ontologies. These ontologies are a rich source of information that could be very helpful during the process of engineering other domain ontologies. We present an automatic technique that, given a set of Web documents, selects appropriate domain ontologies from a collection of pre-existing ontologies. We empirically compare an ontology match score that is based on statistical techniques with simple keyword matching algorithms. The algorithms were tested on a set of 183 publicly available ontologies and documents representing ten different domains. Our algorithm was able to select the correct domain ontology as the top ranked ontology 8 out of 10 times.
面向重用的自动本体识别
对语义网日益增长的兴趣产生了越来越多的公开可用的领域本体。这些本体是丰富的信息源,在设计其他领域本体的过程中非常有帮助。我们提出了一种自动技术,在给定一组Web文档的情况下,从预先存在的本体集合中选择适当的域本体。我们将基于统计技术的本体匹配分数与简单的关键字匹配算法进行了实证比较。这些算法在183个公开可用的本体和代表10个不同领域的文档上进行了测试。我们的算法能够在10次中有8次选择正确的领域本体作为排名最高的本体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信