Evaluating Robustness of Algorithm for Microsatellite Marker Genotyping

Toshiko Matsumoto, R. Nakashige
{"title":"Evaluating Robustness of Algorithm for Microsatellite Marker Genotyping","authors":"Toshiko Matsumoto, R. Nakashige","doi":"10.1109/CIBCB.2005.1594912","DOIUrl":null,"url":null,"abstract":"Microsatellites provide powerful genetic tools for complex disease mapping. Microsatellite genotyping requires analyzing peak data for discrimination of the true allele. In a previous study, we developed a new algorithm for automated genotyping. Here, we evaluate our algorithm’s robustness. First, we found that our algorithm calculates the model parameter of noise peaks appropriately and infers genotypes correctly even with low selectivity and specificity in the intermediate result of its first step. Our results indicate the model robustly calculates noise peaks. Second, our algorithm adequately infers true allele peaks for small sample sets. Furthermore, we evaluated its potential risk of failing to construct noise peak model.","PeriodicalId":330810,"journal":{"name":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2005.1594912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Microsatellites provide powerful genetic tools for complex disease mapping. Microsatellite genotyping requires analyzing peak data for discrimination of the true allele. In a previous study, we developed a new algorithm for automated genotyping. Here, we evaluate our algorithm’s robustness. First, we found that our algorithm calculates the model parameter of noise peaks appropriately and infers genotypes correctly even with low selectivity and specificity in the intermediate result of its first step. Our results indicate the model robustly calculates noise peaks. Second, our algorithm adequately infers true allele peaks for small sample sets. Furthermore, we evaluated its potential risk of failing to construct noise peak model.
评价微卫星标记基因分型算法的稳健性
微型卫星为绘制复杂疾病图谱提供了强大的遗传工具。微卫星基因分型需要分析峰值数据来判别真等位基因。在之前的研究中,我们开发了一种新的自动基因分型算法。在这里,我们评估算法的鲁棒性。首先,我们发现我们的算法在第一步的中间结果中,即使选择性和特异性较低,也能很好地计算噪声峰的模型参数,正确推断基因型。结果表明,该模型能较好地计算噪声峰值。其次,我们的算法充分地推断出小样本集的真实等位基因峰值。此外,我们还评估了无法建立噪声峰值模型的潜在风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信