A modified MPPT algorithm with integrated active power control for PV-battery systems

Fulong Li, M. Alshareef, Zhengyu Lin, Wei Jiang
{"title":"A modified MPPT algorithm with integrated active power control for PV-battery systems","authors":"Fulong Li, M. Alshareef, Zhengyu Lin, Wei Jiang","doi":"10.1109/ICRERA.2016.7884432","DOIUrl":null,"url":null,"abstract":"Conventional operation strategy for photovoltaic (PV) system is to operate PV at maximum power point (MPP) for maximum energy harvest. However, this will cause problems in some scenarios. For PV-battery systems, when the batteries are nearly fully charged, operating PV at MPP will overcharge the battery, and decrease the lifespan of batteries. Besides, it has been reported that in some sunny days, surplus power generated by PVs can cause the turmoil of the distribution power network. To address this problem, this paper proposed a modified maximum power point tracking (MPPT) algorithm with integrated active PV output power control. The proposed algorithm has been experimentally verified in an off-grid PV-battery system. According to the Power-Voltage characteristic of PV, there are two possible operating points for reduced power output, thus, a comparison of two operation points is discussed.","PeriodicalId":287863,"journal":{"name":"2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRERA.2016.7884432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Conventional operation strategy for photovoltaic (PV) system is to operate PV at maximum power point (MPP) for maximum energy harvest. However, this will cause problems in some scenarios. For PV-battery systems, when the batteries are nearly fully charged, operating PV at MPP will overcharge the battery, and decrease the lifespan of batteries. Besides, it has been reported that in some sunny days, surplus power generated by PVs can cause the turmoil of the distribution power network. To address this problem, this paper proposed a modified maximum power point tracking (MPPT) algorithm with integrated active PV output power control. The proposed algorithm has been experimentally verified in an off-grid PV-battery system. According to the Power-Voltage characteristic of PV, there are two possible operating points for reduced power output, thus, a comparison of two operation points is discussed.
一种集成有功功率控制的改进pv -电池系统MPPT算法
传统的光伏发电系统运行策略是在最大功率点运行光伏发电,以获得最大的能量。然而,这在某些情况下会导致问题。对于PV电池系统,当电池几乎充满电时,在MPP下运行PV会使电池过度充电,从而降低电池的寿命。此外,据报道,在一些晴朗的日子里,光伏发电产生的剩余电力可能会导致配电网的混乱。针对这一问题,本文提出了一种改进的最大功率点跟踪(MPPT)算法,该算法集成了有源光伏输出功率控制。该算法在离网光伏电池系统中得到了实验验证。根据光伏发电的功率-电压特性,减小功率输出有两个可能的工作点,因此,讨论了两个工作点的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信