Energy-Aware Server Selection Algorithms in a Scalable Cluster

Hiroki Kataoka, A. Sawada, Dilawaer Duolikun, T. Enokido, M. Takizawa
{"title":"Energy-Aware Server Selection Algorithms in a Scalable Cluster","authors":"Hiroki Kataoka, A. Sawada, Dilawaer Duolikun, T. Enokido, M. Takizawa","doi":"10.1109/AINA.2016.154","DOIUrl":null,"url":null,"abstract":"It is critical to reduce the electric energy consumed in information systems, especially server clusters. In this paper, we extend the multi-level power consumption (MLPC) model and the multi-level computation (MLC) model to a server with multiple CPUs. In this paper, we newly propose a totally energy-aware (TEA) algorithm to select a server for a process in a cluster. Here, servers in a cluster are first classified into subclusters. Each subcluster is characterized in terms of the electric power and computation rate. One server is randomly selected in each subcluster. Then, one server is selected so that the expected electric energy is minimum in the selected servers. We evaluate the TEA algorithm and show not only the total electric energy consumption of the servers but also the average execution time of processes are reduced in the TEA algorithm compared with other algorithms.","PeriodicalId":438655,"journal":{"name":"2016 IEEE 30th International Conference on Advanced Information Networking and Applications (AINA)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 30th International Conference on Advanced Information Networking and Applications (AINA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AINA.2016.154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

Abstract

It is critical to reduce the electric energy consumed in information systems, especially server clusters. In this paper, we extend the multi-level power consumption (MLPC) model and the multi-level computation (MLC) model to a server with multiple CPUs. In this paper, we newly propose a totally energy-aware (TEA) algorithm to select a server for a process in a cluster. Here, servers in a cluster are first classified into subclusters. Each subcluster is characterized in terms of the electric power and computation rate. One server is randomly selected in each subcluster. Then, one server is selected so that the expected electric energy is minimum in the selected servers. We evaluate the TEA algorithm and show not only the total electric energy consumption of the servers but also the average execution time of processes are reduced in the TEA algorithm compared with other algorithms.
可扩展集群中的能量感知服务器选择算法
降低信息系统,特别是服务器集群的电能消耗是至关重要的。本文将多级功耗(MLPC)模型和多级计算(MLC)模型扩展到具有多个cpu的服务器。在本文中,我们提出了一种完全能量感知(TEA)算法来为集群中的进程选择服务器。在这里,集群中的服务器首先被划分为子集群。每个子簇根据电功率和计算速率进行表征。在每个子集群中随机选择一个服务器。然后,选择一个服务器,使所选服务器中的期望电能最小。我们对TEA算法进行了评估,结果表明,与其他算法相比,TEA算法不仅减少了服务器的总能耗,而且减少了进程的平均执行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信