Femoral segmentation of MRI images using PP-LiteSeg

Boyuan Peng, Yiyang Liu, Xin Zhu, Shouhei Ikeda, S. Tsunoda
{"title":"Femoral segmentation of MRI images using PP-LiteSeg","authors":"Boyuan Peng, Yiyang Liu, Xin Zhu, Shouhei Ikeda, S. Tsunoda","doi":"10.1109/BHI56158.2022.9926879","DOIUrl":null,"url":null,"abstract":"Hematological malignancies are a lethal disease that seriously endangers human lives. In addition to bone marrow biopsy, the use of MRI to analyze the bone marrow of femur is a new and efficient diagnostic method for hematological tumors. Accurate segmentation of femur plays a crucial role in screening this disease. In this paper, we compared four neural networks (PP-LiteSeg, U-Net, SegNet, and PspNet) for femur segmentation using 579 training and testing MRI images from 200 patients with HM. PP-LiteSeg demonstrated the best performance with an average Dice coefficient of 0.92.","PeriodicalId":347210,"journal":{"name":"2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BHI56158.2022.9926879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Hematological malignancies are a lethal disease that seriously endangers human lives. In addition to bone marrow biopsy, the use of MRI to analyze the bone marrow of femur is a new and efficient diagnostic method for hematological tumors. Accurate segmentation of femur plays a crucial role in screening this disease. In this paper, we compared four neural networks (PP-LiteSeg, U-Net, SegNet, and PspNet) for femur segmentation using 579 training and testing MRI images from 200 patients with HM. PP-LiteSeg demonstrated the best performance with an average Dice coefficient of 0.92.
利用PP-LiteSeg对MRI图像进行股骨分割
血液恶性肿瘤是一种严重危及人类生命的致命疾病。除骨髓活检外,利用MRI分析股骨骨髓是一种新的、有效的血液肿瘤诊断方法。股骨的准确分割在本病的筛查中起着至关重要的作用。在本文中,我们比较了四种神经网络(PP-LiteSeg, U-Net, SegNet和PspNet)对股骨分割的影响,使用了来自200名HM患者的579张训练和测试MRI图像。PP-LiteSeg表现最佳,平均Dice系数为0.92。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信