Weldability of High Strength Martensitic Stainless Steels

Shigetsugu Asakura, M. Nihei
{"title":"Weldability of High Strength Martensitic Stainless Steels","authors":"Shigetsugu Asakura, M. Nihei","doi":"10.2207/QJJWS1943.50.458","DOIUrl":null,"url":null,"abstract":"Influences of the conditions of weld thermal cycle and postweld heat treatment on the notch toughness, tensile properties and crack sensitivity in the HAZ of two high strength (80 kg/mm2 type and 100 kg/ mm2 type) martensitic stainless steels containing Ni, Mo, Nb and Cu were investigated by means of welding thermal cycle simulating method and the slit type cracking test. The results of these tests are sum-marizsed as follows.(1) In the case of 80 kg/mm2 type steel (base metal A), the impact value steeply falls when thermal cycle above 1, 300°C peak temperature is experienced, and recovery of the impact value due to the postheating is little even with postheating at 650°C for 2 hours.(2) In case of the 100 kg, /mm2 type (base metal B; precipitation hardening) steel, the impact value does not almost decrease even though peak temperature of the thermal cycle is changed within the range of Ac1 point-1, 300°C. However, postweld aged at 500°C for 4 hours after exposure to the tehrmal cycle, the impact value drops remarkably when the peak temperature of the thermal cycle exceeds 950°C.(3) In the multipass weld joint tests on two test steels which was carried out under optimum welding procedure and postweld haet treatment as shown in Table 4, satisfactory notch toughness and tensile properties were obtained.(4) In the slit type cracking test, the HAZ cracking can be perfectly prevented when the preheating temperature was higher than 200°C for base metal A and 100°C for base metal B, and holding temperature after welding was at 100°C for each kinds of the test steels and then postheated at 600°C for 10 minutes.","PeriodicalId":273687,"journal":{"name":"Transactions of the Japan Welding Society","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Japan Welding Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2207/QJJWS1943.50.458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Influences of the conditions of weld thermal cycle and postweld heat treatment on the notch toughness, tensile properties and crack sensitivity in the HAZ of two high strength (80 kg/mm2 type and 100 kg/ mm2 type) martensitic stainless steels containing Ni, Mo, Nb and Cu were investigated by means of welding thermal cycle simulating method and the slit type cracking test. The results of these tests are sum-marizsed as follows.(1) In the case of 80 kg/mm2 type steel (base metal A), the impact value steeply falls when thermal cycle above 1, 300°C peak temperature is experienced, and recovery of the impact value due to the postheating is little even with postheating at 650°C for 2 hours.(2) In case of the 100 kg, /mm2 type (base metal B; precipitation hardening) steel, the impact value does not almost decrease even though peak temperature of the thermal cycle is changed within the range of Ac1 point-1, 300°C. However, postweld aged at 500°C for 4 hours after exposure to the tehrmal cycle, the impact value drops remarkably when the peak temperature of the thermal cycle exceeds 950°C.(3) In the multipass weld joint tests on two test steels which was carried out under optimum welding procedure and postweld haet treatment as shown in Table 4, satisfactory notch toughness and tensile properties were obtained.(4) In the slit type cracking test, the HAZ cracking can be perfectly prevented when the preheating temperature was higher than 200°C for base metal A and 100°C for base metal B, and holding temperature after welding was at 100°C for each kinds of the test steels and then postheated at 600°C for 10 minutes.
高强度马氏体不锈钢的可焊性
采用焊接热循环模拟方法和缝型开裂试验,研究了焊接热循环条件和焊后热处理条件对80 kg/mm2型和100 kg/mm2型高强度含Ni、Mo、Nb和Cu马氏体不锈钢热影响区缺口韧性、拉伸性能和裂纹敏感性的影响。试验结果总结如下:(1)对于80 kg/mm2型钢(母材A),在1300℃以上的热循环峰值温度下,冲击值急剧下降,即使在650℃下保温2小时,由于保温而恢复的冲击值也很小。在Ac1 ~ 1300℃范围内,即使改变热循环的峰值温度,冲击值也几乎不降低。然而,热循环后500℃时效4h,当热循环峰值温度超过950℃时,冲击值明显下降。(3)在表4所示的最佳焊接工艺和焊后热处理条件下,对两种试验钢进行了多道次焊缝连接试验,获得了满意的缺口韧性和拉伸性能。当母材A和母材B的预热温度分别高于200°C和100°C时,焊后保温温度均为100°C,然后在600°C下保温10分钟,可完全防止热影响区开裂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信