{"title":"Exploiting self-similarity in geometry for voxel based solid modeling","authors":"E. Parker, T. Udeshi","doi":"10.1145/781606.781631","DOIUrl":null,"url":null,"abstract":"Voxel-based modeling techniques are known for their robustness and flexibility. However, they have three major shortcomings: (1) Memory intensive, since a large number of voxels are needed to represent high-resolution models (2) Computationally expensive, since a large number of voxels need to be visited (3) Computationally expensive isosurface extraction is needed to visualize the results. We describe techniques which alleviate these by taking advantage of self-similarity in the data making voxel-techniques practical and attractive. We describe algorithms for MEMS process emulation, isosurface extraction and visualization which utilize these techniques.","PeriodicalId":405863,"journal":{"name":"ACM Symposium on Solid Modeling and Applications","volume":"306 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Symposium on Solid Modeling and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/781606.781631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
Voxel-based modeling techniques are known for their robustness and flexibility. However, they have three major shortcomings: (1) Memory intensive, since a large number of voxels are needed to represent high-resolution models (2) Computationally expensive, since a large number of voxels need to be visited (3) Computationally expensive isosurface extraction is needed to visualize the results. We describe techniques which alleviate these by taking advantage of self-similarity in the data making voxel-techniques practical and attractive. We describe algorithms for MEMS process emulation, isosurface extraction and visualization which utilize these techniques.