{"title":"An attribute reduction approach and its accelerated version for hybrid data","authors":"Wei Wei, Jiye Liang, Y. Qian, Feng Wang","doi":"10.1109/COGINF.2009.5250768","DOIUrl":null,"url":null,"abstract":"In practical issues, categorical data and numerical data usually coexist, and a unified data reduction technique for hybrid data is desirable. In this paper, an information measure is proposed for computing the discernibility power of a categorical or numeric attribute. Based on the measure, a uniform definition of significance of attributes with categorical values and numerical values is proposed. Furthermore, an algorithm to obtain an attribute reduct from hybrid data is presented, and one of its accelerated version is also constructed. Experiments show that these two algorithms can get the same reducts, and the classification accuracies of reduced datasets are similar with the ones using Hu's algorithm. However, the accelerated version consumes much less time than the original one and Hu's algorithm do.","PeriodicalId":420853,"journal":{"name":"2009 8th IEEE International Conference on Cognitive Informatics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 8th IEEE International Conference on Cognitive Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COGINF.2009.5250768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
In practical issues, categorical data and numerical data usually coexist, and a unified data reduction technique for hybrid data is desirable. In this paper, an information measure is proposed for computing the discernibility power of a categorical or numeric attribute. Based on the measure, a uniform definition of significance of attributes with categorical values and numerical values is proposed. Furthermore, an algorithm to obtain an attribute reduct from hybrid data is presented, and one of its accelerated version is also constructed. Experiments show that these two algorithms can get the same reducts, and the classification accuracies of reduced datasets are similar with the ones using Hu's algorithm. However, the accelerated version consumes much less time than the original one and Hu's algorithm do.