Multi-camera tracking by joint calibration, association and fusion

Siyue Chen, H. Leung
{"title":"Multi-camera tracking by joint calibration, association and fusion","authors":"Siyue Chen, H. Leung","doi":"10.1109/ICDSC.2011.6042913","DOIUrl":null,"url":null,"abstract":"To perform surveillance using multiple cameras, camera calibration, measurement-to-object association, fusion of measurements from multiple cameras are three essential components. While these three issues are usually addressed separately, they actually have mutual effects on each other. For example, calibration requires correctly associated objects and measurements with calibration errors will result in wrong associations. In this paper, we present a novel joint calibration, association and fusion approach for multi-camera tracking. More specifically, the expectation-maximization (EM) algorithm is incorporated with the extended Kalman filter (EKF) to give a simultaneous estimate of object states, calibration and association parameters. The real video data collected from two cameras are used to evaluate the tracking performance of the proposed method. Compared to the conventional methods, which perform calibration, association and fusion separately, it is shown that the proposed method can significantly improve the robustness and the accuracy of multi-object tracking.","PeriodicalId":385052,"journal":{"name":"2011 Fifth ACM/IEEE International Conference on Distributed Smart Cameras","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fifth ACM/IEEE International Conference on Distributed Smart Cameras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSC.2011.6042913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

To perform surveillance using multiple cameras, camera calibration, measurement-to-object association, fusion of measurements from multiple cameras are three essential components. While these three issues are usually addressed separately, they actually have mutual effects on each other. For example, calibration requires correctly associated objects and measurements with calibration errors will result in wrong associations. In this paper, we present a novel joint calibration, association and fusion approach for multi-camera tracking. More specifically, the expectation-maximization (EM) algorithm is incorporated with the extended Kalman filter (EKF) to give a simultaneous estimate of object states, calibration and association parameters. The real video data collected from two cameras are used to evaluate the tracking performance of the proposed method. Compared to the conventional methods, which perform calibration, association and fusion separately, it is shown that the proposed method can significantly improve the robustness and the accuracy of multi-object tracking.
联合标定、关联和融合的多摄像机跟踪
为了使用多台摄像机进行监视,摄像机校准、测量到目标的关联、多台摄像机测量结果的融合是三个基本组成部分。虽然这三个问题通常是单独解决的,但它们实际上是相互影响的。例如,校准需要正确关联对象,校准错误的测量将导致错误的关联。本文提出了一种新的多摄像机跟踪联合标定、关联和融合方法。更具体地说,将期望最大化(EM)算法与扩展卡尔曼滤波(EKF)相结合,同时估计目标状态、校准和关联参数。用两台摄像机采集的真实视频数据对所提方法的跟踪性能进行了评价。与传统的分别进行标定、关联和融合的方法相比,该方法可以显著提高多目标跟踪的鲁棒性和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信