Ad-hoc Information Retrieval based on Boosted Latent Dirichlet Allocated Topics

Marcelo Mendoza, P. Ormeño, C. Valle
{"title":"Ad-hoc Information Retrieval based on Boosted Latent Dirichlet Allocated Topics","authors":"Marcelo Mendoza, P. Ormeño, C. Valle","doi":"10.1109/SCCC.2018.8705252","DOIUrl":null,"url":null,"abstract":"Latent Dirichlet Allocation (LDA) is a fundamental method in the text mining field. We propose strategies for topic and model selection based on LDA that exploits the semantic coherence of the topics inferred, boosting the quality of the models found. Then we study how our boosted topic models perform in ad-hoc information retrieval tasks. Experimental results in four datasets show that our proposal improves the quality of the topics found favoring document retrieval tasks. Our method outperforms traditional LDA-based methods showing that model selection based on semantic coherence is useful for document modeling and information retrieval tasks.","PeriodicalId":235495,"journal":{"name":"2018 37th International Conference of the Chilean Computer Science Society (SCCC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 37th International Conference of the Chilean Computer Science Society (SCCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCCC.2018.8705252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Latent Dirichlet Allocation (LDA) is a fundamental method in the text mining field. We propose strategies for topic and model selection based on LDA that exploits the semantic coherence of the topics inferred, boosting the quality of the models found. Then we study how our boosted topic models perform in ad-hoc information retrieval tasks. Experimental results in four datasets show that our proposal improves the quality of the topics found favoring document retrieval tasks. Our method outperforms traditional LDA-based methods showing that model selection based on semantic coherence is useful for document modeling and information retrieval tasks.
基于增强潜狄利克雷分配主题的自组织信息检索
潜在狄利克雷分配(LDA)是文本挖掘领域的一种基本方法。我们提出了基于LDA的主题和模型选择策略,该策略利用了推断主题的语义一致性,提高了所发现模型的质量。然后,我们研究了增强主题模型在特殊信息检索任务中的表现。在四个数据集上的实验结果表明,我们的建议提高了发现的主题的质量,有利于文档检索任务。我们的方法优于传统的基于lda的方法,表明基于语义一致性的模型选择对于文档建模和信息检索任务是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信