Value-at-risk-based fuzzy stochastic optimization problems

Shuming Wang, J. Watada
{"title":"Value-at-risk-based fuzzy stochastic optimization problems","authors":"Shuming Wang, J. Watada","doi":"10.1109/FUZZY.2009.5277422","DOIUrl":null,"url":null,"abstract":"A new class of fuzzy stochastic optimization models — two-stage fuzzy stochastic programming with Value-at-Risk (VaR) criteria is established in this paper. An approximation algorithm is proposed to compute the VaR by combining discretization method of fuzzy variable, random simulation technique and bisection method. The convergence theorem of the approximation algorithm is also proved. To solve the two-stage fuzzy stochastic programming problems with VaR criteria, we integrate the approximation algorithm, neural network (NN) and particle swarm optimization (PSO) algorithm, and hence produce a hybrid PSO algorithm to search for the optimal solution. A numerical example is provided to illustrate the designed hybrid PSO algorithm.","PeriodicalId":117895,"journal":{"name":"2009 IEEE International Conference on Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2009.5277422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A new class of fuzzy stochastic optimization models — two-stage fuzzy stochastic programming with Value-at-Risk (VaR) criteria is established in this paper. An approximation algorithm is proposed to compute the VaR by combining discretization method of fuzzy variable, random simulation technique and bisection method. The convergence theorem of the approximation algorithm is also proved. To solve the two-stage fuzzy stochastic programming problems with VaR criteria, we integrate the approximation algorithm, neural network (NN) and particle swarm optimization (PSO) algorithm, and hence produce a hybrid PSO algorithm to search for the optimal solution. A numerical example is provided to illustrate the designed hybrid PSO algorithm.
基于风险值的模糊随机优化问题
本文建立了一类新的模糊随机优化模型——带风险值准则的两阶段模糊随机规划。将模糊变量离散化方法、随机模拟技术和对分法相结合,提出了一种计算VaR的近似算法。并证明了近似算法的收敛性定理。为了解决带有VaR准则的两阶段模糊随机规划问题,我们将逼近算法、神经网络(NN)和粒子群优化(PSO)算法相结合,提出了一种混合粒子群优化算法来搜索最优解。给出了一个数值算例来说明所设计的混合粒子群算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信