Remote Sensing Image Classification Method Based on Preferential Adaptive Interval-Value Fuzzy C-Means

Guozheng Feng, Jindong Xu, Baode Fan, Tianyu Zhao, Meng Zhu, Xiao Sun, Jin Zhou, Shiyuan Han
{"title":"Remote Sensing Image Classification Method Based on Preferential Adaptive Interval-Value Fuzzy C-Means","authors":"Guozheng Feng, Jindong Xu, Baode Fan, Tianyu Zhao, Meng Zhu, Xiao Sun, Jin Zhou, Shiyuan Han","doi":"10.1109/SPAC46244.2018.8965521","DOIUrl":null,"url":null,"abstract":"The heterogeneity of objects within the class and the ambiguity of objects between the classes in remote sensing images cause the uncertainty in ground objects classification. Fuzzy set theory could express the fuzziness effectively, while interval-value data model can reflect the uncertainty of the data. Therefore, combining the interval-value data model and fuzzy c-means algorithm, a preferential adaptive interval-value fuzzy c-means (PA-IVFCM) algorithm is proposed in this paper. The overall interval width of the category is adjusted by normalizing mean square error in the class, the interval modeling of the data is selected by using the preferential factor dynamically, thereby increasing the intra-class compactness and the boundary separability. The experimental results show that PA-IVFCM method can be effectively applied in the SPOT5 remote sensing data classification, and the overall classification accuracy and Kappa coefficients are greatly improved compared with the existing popular fuzzy classification methods.","PeriodicalId":360369,"journal":{"name":"2018 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC46244.2018.8965521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The heterogeneity of objects within the class and the ambiguity of objects between the classes in remote sensing images cause the uncertainty in ground objects classification. Fuzzy set theory could express the fuzziness effectively, while interval-value data model can reflect the uncertainty of the data. Therefore, combining the interval-value data model and fuzzy c-means algorithm, a preferential adaptive interval-value fuzzy c-means (PA-IVFCM) algorithm is proposed in this paper. The overall interval width of the category is adjusted by normalizing mean square error in the class, the interval modeling of the data is selected by using the preferential factor dynamically, thereby increasing the intra-class compactness and the boundary separability. The experimental results show that PA-IVFCM method can be effectively applied in the SPOT5 remote sensing data classification, and the overall classification accuracy and Kappa coefficients are greatly improved compared with the existing popular fuzzy classification methods.
基于优先自适应区间值模糊c均值的遥感图像分类方法
遥感影像中类内地物的异质性和类间地物的模糊性导致地物分类的不确定性。模糊集理论能有效地表达模糊性,而区间值数据模型能反映数据的不确定性。因此,本文将区间值数据模型与模糊c-均值算法相结合,提出了一种优先自适应区间值模糊c-均值(PA-IVFCM)算法。通过归一化类内均方误差调整类的总区间宽度,利用优先因子动态选择数据的区间建模,从而提高了类内紧密性和边界可分性。实验结果表明,PA-IVFCM方法可以有效地应用于SPOT5遥感数据分类,与现有流行的模糊分类方法相比,整体分类精度和Kappa系数均有较大提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信