Toxicity Prediction Using Pre-trained Autoencoder

M. Galushka, Fiona Browne, M. Mulvenna, R. Bond, G. Lightbody
{"title":"Toxicity Prediction Using Pre-trained Autoencoder","authors":"M. Galushka, Fiona Browne, M. Mulvenna, R. Bond, G. Lightbody","doi":"10.1109/BIBM.2018.8621421","DOIUrl":null,"url":null,"abstract":"Toxicology in the 21st Century (Tox21) is a collaborative initiative whose purpose is to investigate and develop efficient testing approaches to predict the impact chemical compounds have on Humans. In this paper we investigate how a pre-trained auto-encoder can be used to build classifiers capable of predicting the toxicity property of chemical compounds. Using a Deep Learning approach, we performed experiments to deter-mine if chemical compound fingerprints can be used to predict active and inactive compounds based on simplified molecular-input line-entry system (SMILES) in twelve selected assays. We conducted these experiments using data from ChEMBL and Tox21 to investigate how the latent layer produced by an auto-encoder can be used to train a classifier. All experimental results are compared against the winning teams of the Tox21 challenge, where positives and limitations of the proposed approaches are discussed.","PeriodicalId":108667,"journal":{"name":"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"157 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2018.8621421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Toxicology in the 21st Century (Tox21) is a collaborative initiative whose purpose is to investigate and develop efficient testing approaches to predict the impact chemical compounds have on Humans. In this paper we investigate how a pre-trained auto-encoder can be used to build classifiers capable of predicting the toxicity property of chemical compounds. Using a Deep Learning approach, we performed experiments to deter-mine if chemical compound fingerprints can be used to predict active and inactive compounds based on simplified molecular-input line-entry system (SMILES) in twelve selected assays. We conducted these experiments using data from ChEMBL and Tox21 to investigate how the latent layer produced by an auto-encoder can be used to train a classifier. All experimental results are compared against the winning teams of the Tox21 challenge, where positives and limitations of the proposed approaches are discussed.
使用预训练自编码器进行毒性预测
21世纪毒理学(Tox21)是一项合作倡议,其目的是研究和开发有效的测试方法,以预测化合物对人类的影响。在本文中,我们研究了如何使用预训练的自编码器来构建能够预测化合物毒性的分类器。使用深度学习方法,我们进行了实验,以确定化合物指纹是否可以用于预测基于简化分子输入行输入系统(SMILES)的活性和非活性化合物。我们使用ChEMBL和Tox21的数据进行了这些实验,以研究如何使用自编码器产生的潜在层来训练分类器。所有实验结果都与Tox21挑战的获胜团队进行了比较,讨论了所提出方法的优点和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信