Supervised classification algorithms based on artificial immune

Shaojin Feng
{"title":"Supervised classification algorithms based on artificial immune","authors":"Shaojin Feng","doi":"10.1109/ICNC.2012.6234667","DOIUrl":null,"url":null,"abstract":"In order to explore more efficient classification method, this paper presents a supervised classification algorithm based on artificial immune. It describes the representation of antibody and antigen in the classification algorithm, mathematical model of antibody population reproduction and immune memory formation. The experimental results show that the algorithm can achieve high classification performance. The average classification accuracy is 89.3%, stable classification performance. It has non-linear and clone selection, immune regulation, immune memory and other features of biological immune system, which provides a new solution for supervised classification problem.","PeriodicalId":404981,"journal":{"name":"2012 8th International Conference on Natural Computation","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 8th International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2012.6234667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In order to explore more efficient classification method, this paper presents a supervised classification algorithm based on artificial immune. It describes the representation of antibody and antigen in the classification algorithm, mathematical model of antibody population reproduction and immune memory formation. The experimental results show that the algorithm can achieve high classification performance. The average classification accuracy is 89.3%, stable classification performance. It has non-linear and clone selection, immune regulation, immune memory and other features of biological immune system, which provides a new solution for supervised classification problem.
基于人工免疫的监督分类算法
为了探索更有效的分类方法,本文提出了一种基于人工免疫的监督分类算法。描述了抗体和抗原在分类算法中的表示、抗体群体繁殖的数学模型和免疫记忆的形成。实验结果表明,该算法能达到较高的分类性能。平均分类准确率为89.3%,分类性能稳定。它具有生物免疫系统的非线性和克隆选择、免疫调节、免疫记忆等特点,为监督分类问题提供了新的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信