Understanding Linear Style Transfer Auto-Encoders

Ian Pradhan, Siwei Lyu
{"title":"Understanding Linear Style Transfer Auto-Encoders","authors":"Ian Pradhan, Siwei Lyu","doi":"10.1109/mlsp52302.2021.9596412","DOIUrl":null,"url":null,"abstract":"Style transfer auto-encoder has recently been shown to be highly effective in synthesizing images with styles transferred from another image. In this work, we aim to provide an answer to this question by studying a simpler variant of STAE, namely, the linear style transfer auto-encoders (LinSTAEs), where the encoder and decoders are all linear models. We show that the objective function of LinSTAE, under the $\\ell_{2}$ loss, affords a simple form, and the optimal solutions reveal the mechanism how the encoder capture joint characteristics from the input and the target domain, and the decoders restore their idiosyncrasies. We further show that at least for the linear case, the cycle reconstruction loss is not necessary - the vanilla LinSTAE objective function is already effective. We use numerical experiments on the synthetic and the MNIST dataset to showcase our findings.","PeriodicalId":156116,"journal":{"name":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mlsp52302.2021.9596412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Style transfer auto-encoder has recently been shown to be highly effective in synthesizing images with styles transferred from another image. In this work, we aim to provide an answer to this question by studying a simpler variant of STAE, namely, the linear style transfer auto-encoders (LinSTAEs), where the encoder and decoders are all linear models. We show that the objective function of LinSTAE, under the $\ell_{2}$ loss, affords a simple form, and the optimal solutions reveal the mechanism how the encoder capture joint characteristics from the input and the target domain, and the decoders restore their idiosyncrasies. We further show that at least for the linear case, the cycle reconstruction loss is not necessary - the vanilla LinSTAE objective function is already effective. We use numerical experiments on the synthetic and the MNIST dataset to showcase our findings.
理解线性风格传输自动编码器
风格转换自编码器最近被证明是非常有效的合成图像与风格从另一个图像转移。在这项工作中,我们的目标是通过研究一种更简单的STAE变体来回答这个问题,即线性风格转移自编码器(LinSTAEs),其中编码器和解码器都是线性模型。我们证明了在$\ell_{2}$损失下,LinSTAE的目标函数提供了一个简单的形式,其最优解揭示了编码器如何从输入域和目标域捕获联合特征,以及解码器如何恢复其特性的机制。我们进一步证明,至少在线性情况下,周期重构损失是不必要的——普通的LinSTAE目标函数已经是有效的。我们使用合成数据集和MNIST数据集的数值实验来展示我们的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信