A new method of automatic modulation recognition based on dimension reduction

Hui Wang, Lili Guo
{"title":"A new method of automatic modulation recognition based on dimension reduction","authors":"Hui Wang, Lili Guo","doi":"10.1109/CPGPS.2017.8075146","DOIUrl":null,"url":null,"abstract":"To improve the recognition rate of signal modulation recognition methods under the low Signal-to-noise ratio (SNR), a modulation recognition method is proposed. In this paper, we study an automatic modulation recognition through the Artificial Neural Network (ANN). Implement and design 7 digital modulations are: 2FSK, 4FSK, 8FSK, BPSK, QPSK, MSK and 2ASK. The cyclic spectrum after reducing dimension via Principle Component Analysis (PCA) is chosen as key feature for digital modulation recognizer based on the ANN. We corrupted the signals by additive White Gaussian Noise (AWGN) for testing the algorithm. The simulation results show that the ANN could classify the signals in its current state of development.","PeriodicalId":340067,"journal":{"name":"2017 Forum on Cooperative Positioning and Service (CPGPS)","volume":"156 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Forum on Cooperative Positioning and Service (CPGPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CPGPS.2017.8075146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

To improve the recognition rate of signal modulation recognition methods under the low Signal-to-noise ratio (SNR), a modulation recognition method is proposed. In this paper, we study an automatic modulation recognition through the Artificial Neural Network (ANN). Implement and design 7 digital modulations are: 2FSK, 4FSK, 8FSK, BPSK, QPSK, MSK and 2ASK. The cyclic spectrum after reducing dimension via Principle Component Analysis (PCA) is chosen as key feature for digital modulation recognizer based on the ANN. We corrupted the signals by additive White Gaussian Noise (AWGN) for testing the algorithm. The simulation results show that the ANN could classify the signals in its current state of development.
一种基于降维的调制自动识别新方法
为了提高信号调制识别方法在低信噪比条件下的识别率,提出了一种调制识别方法。本文研究了一种基于人工神经网络的调制信号自动识别方法。实现和设计7种数字调制:2FSK、4FSK、8FSK、BPSK、QPSK、MSK和2ASK。采用主成分分析(PCA)降维后的循环频谱作为基于人工神经网络的数字调制识别的关键特征。为了测试该算法,我们对信号进行了加性高斯白噪声(AWGN)破坏。仿真结果表明,人工神经网络在其目前的发展状态下能够对信号进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信