A code for square permutations and convex permutominoes

E. Duchi
{"title":"A code for square permutations and convex permutominoes","authors":"E. Duchi","doi":"10.23638/DMTCS-21-2-2","DOIUrl":null,"url":null,"abstract":"In this article we consider square permutations, a natural subclass of permutations defined in terms of geometric conditions, that can also be described in terms of pattern avoiding permutations, and convex permutoninoes, a related subclass of polyominoes. While these two classes of objects arised independently in various contexts, they play a natural role in the description of certain random horizontally and vertically convex grid configurations. \nWe propose a common approach to the enumeration of these two classes of objets that allows us to explain the known common form of their generating functions, and to derive new refined formulas and linear time random generation algorithms for these objects and the associated grid configurations.","PeriodicalId":110830,"journal":{"name":"Discret. Math. Theor. Comput. Sci.","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discret. Math. Theor. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23638/DMTCS-21-2-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this article we consider square permutations, a natural subclass of permutations defined in terms of geometric conditions, that can also be described in terms of pattern avoiding permutations, and convex permutoninoes, a related subclass of polyominoes. While these two classes of objects arised independently in various contexts, they play a natural role in the description of certain random horizontally and vertically convex grid configurations. We propose a common approach to the enumeration of these two classes of objets that allows us to explain the known common form of their generating functions, and to derive new refined formulas and linear time random generation algorithms for these objects and the associated grid configurations.
正方形排列和凸置换的代码
在本文中,我们将考虑平方置换和凸置换,这是根据几何条件定义的置换的自然子类,也可以用避免模式置换来描述。凸置换是多多项式的相关子类。虽然这两类对象在不同的环境中独立出现,但它们在描述某些随机的水平和垂直凸网格配置中发挥着自然的作用。我们提出了一种常见的方法来枚举这两类对象,使我们能够解释其生成函数的已知常见形式,并为这些对象和相关的网格配置导出新的精炼公式和线性时间随机生成算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信