A

Hiroki Yagisita
{"title":"A","authors":"Hiroki Yagisita","doi":"10.1525/9780520965553-003","DOIUrl":null,"url":null,"abstract":"We consider the nonlocal analogue of the Fisher-KPP equation where $ \\mu$ is a Borel-measure on $ \\mathbb{R}$ with $ \\mu(\\mathbb{R})=1$ and $f$ satisfies $f(0)=f(1)=$ $0$ and $f >0$ in $(0,1)$ . We do not assume that $ \\mu$ is absolutely continuous. The equation may have a standing wave solution (a traveling wave solution with speed $0$ ) whose profile is a monotone but discontinuous function. We show that there is a constant $c _{*}$ such that it has a traveling wave solution with monotone profile and speed $c$ when $c \\geq c_{*}$ while no periodic traveling wave solution with average speed $c$ when $c <c_{*}$ . In order to prove it, we modify a recursive method for abstract monotone discrete dynamical systems by Weinberger. We note that the monotone semfflow generated by the equation does not have compactness with respect to the compact-open topology.","PeriodicalId":149341,"journal":{"name":"Dictionary of the Ben cao gang mu, Volume 2","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dictionary of the Ben cao gang mu, Volume 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1525/9780520965553-003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the nonlocal analogue of the Fisher-KPP equation where $ \mu$ is a Borel-measure on $ \mathbb{R}$ with $ \mu(\mathbb{R})=1$ and $f$ satisfies $f(0)=f(1)=$ $0$ and $f >0$ in $(0,1)$ . We do not assume that $ \mu$ is absolutely continuous. The equation may have a standing wave solution (a traveling wave solution with speed $0$ ) whose profile is a monotone but discontinuous function. We show that there is a constant $c _{*}$ such that it has a traveling wave solution with monotone profile and speed $c$ when $c \geq c_{*}$ while no periodic traveling wave solution with average speed $c$ when $c
一个
我们考虑Fisher-KPP方程的非局部类似,其中$ \mu$是$ \mathbb{R}$上的borel测度,$ \mu(\mathbb{R})=1$和$f$在$(0,1)$中满足$f(0)=f(1)=$$0$和$f >0$。我们不假设$ \mu$是绝对连续的。方程可能有一个驻波解(速度为$0$的行波解),其剖面是一个单调但不连续的函数。我们证明了存在一个常数$c _{*}$,使得它在$c \geq c_{*}$时具有单调剖面和速度$c$的行波解,而在$c
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信