Nonparametric Recursive Kernel Type Eestimators for the Moment Generating Function Under Censored Data

S. Bouzebda, I. Elhattab, Y. Slaoui, Nourelhouda Taachouche
{"title":"Nonparametric Recursive Kernel Type Eestimators for the Moment Generating Function Under Censored Data","authors":"S. Bouzebda, I. Elhattab, Y. Slaoui, Nourelhouda Taachouche","doi":"10.19139/soic-2310-5070-1678","DOIUrl":null,"url":null,"abstract":"\n \n \nWe are mainly concerned with kernel-type estimators for the moment-generating function in the present paper. More precisely, we establish the central limit theorem with the characterization of the bias and the variance for the nonparametric recursive kernel-type estimators for the moment-generating function under some mild conditions in the censored data setting. Finally, we investigate the methodology’s performance for small samples through a short simulation study. \n \n \n","PeriodicalId":131002,"journal":{"name":"Statistics, Optimization & Information Computing","volume":"2016 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, Optimization & Information Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-1678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We are mainly concerned with kernel-type estimators for the moment-generating function in the present paper. More precisely, we establish the central limit theorem with the characterization of the bias and the variance for the nonparametric recursive kernel-type estimators for the moment-generating function under some mild conditions in the censored data setting. Finally, we investigate the methodology’s performance for small samples through a short simulation study.
截尾数据下矩生成函数的非参数递归核型估计
本文主要讨论矩生成函数的核估计。更准确地说,我们建立了在一些温和条件下,在截尾数据集上的矩生成函数的非参数递推核型估计的偏置和方差的中心极限定理。最后,我们通过一个简短的模拟研究来研究该方法在小样本情况下的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信