Noise robust radar HRR target recognition based on Bayesian sparse learning

L. Du, Penghui Wang, Lei Zhang, Hongwei Liu, Danlei Xu
{"title":"Noise robust radar HRR target recognition based on Bayesian sparse learning","authors":"L. Du, Penghui Wang, Lei Zhang, Hongwei Liu, Danlei Xu","doi":"10.1109/RADAR.2013.6652041","DOIUrl":null,"url":null,"abstract":"A noise robust statistical model based on Bayesian sparse learning (BSL) is developed to characterize the complex-valued high range resolution (HRR) radar target signal, motivated by the problem of radar automatic target recognition (RATR).We assume a sparseness-promoting prior on the complex echoes from the scattering centers and a Markov dependency for the location of the dominant scattering center between consecutive HRR signals in the hierarchical Bayesian model. Considering the low signal-to-noise ratio (SNR) problem for a test sample, the statistical model trained under the high SNR can be updated to match the measured test sample and the corresponding recognition decision can be made based on the updated model. Efficient inference is performed via variational Bayesian (VB) for the proposed Bayesian sparse model. To validate the formulation, we present the experimental results on the measured HRR dataset for target recognition and signal reconstruction, and provide comparisons to some other statistical models for RATR.","PeriodicalId":365285,"journal":{"name":"2013 International Conference on Radar","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Radar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2013.6652041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A noise robust statistical model based on Bayesian sparse learning (BSL) is developed to characterize the complex-valued high range resolution (HRR) radar target signal, motivated by the problem of radar automatic target recognition (RATR).We assume a sparseness-promoting prior on the complex echoes from the scattering centers and a Markov dependency for the location of the dominant scattering center between consecutive HRR signals in the hierarchical Bayesian model. Considering the low signal-to-noise ratio (SNR) problem for a test sample, the statistical model trained under the high SNR can be updated to match the measured test sample and the corresponding recognition decision can be made based on the updated model. Efficient inference is performed via variational Bayesian (VB) for the proposed Bayesian sparse model. To validate the formulation, we present the experimental results on the measured HRR dataset for target recognition and signal reconstruction, and provide comparisons to some other statistical models for RATR.
基于贝叶斯稀疏学习的噪声稳健雷达HRR目标识别
针对雷达目标自动识别(RATR)问题,提出了一种基于贝叶斯稀疏学习(BSL)的噪声鲁棒统计模型来表征复值高距离分辨率(HRR)雷达目标信号。在层次贝叶斯模型中,我们假设来自散射中心的复杂回波具有稀疏增强先验,并且连续HRR信号之间的主散射中心位置具有马尔可夫依赖性。考虑到测试样本的低信噪比问题,可以更新在高信噪比下训练的统计模型,使其与实测测试样本相匹配,并根据更新后的模型做出相应的识别决策。针对所提出的贝叶斯稀疏模型,利用变分贝叶斯(VB)进行了高效的推理。为了验证该公式,我们给出了在实测HRR数据集上进行目标识别和信号重建的实验结果,并与其他一些RATR统计模型进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信