A spatially constrained low-rank matrix factorization for the functional parcellation of the brain

Alexis Benichoux, T. Blumensath
{"title":"A spatially constrained low-rank matrix factorization for the functional parcellation of the brain","authors":"Alexis Benichoux, T. Blumensath","doi":"10.5281/ZENODO.44129","DOIUrl":null,"url":null,"abstract":"We propose a new matrix recovery framework to partition brain activity using time series of resting-state functional Magnetic Resonance Imaging (fMRI). Spatial clusters are obtained with a new low-rank factorization algorithm that offers the ability to add different types of constraints. As an example we add a total variation type cost function in order to exploit neighborhood constraints. We first validate the performance of our algorithm on simulated data, which allows us to show that the neighborhood constraint improves the recovery in noisy or undersampled set-ups. Then we conduct experiments on real-world data, where we simulated an accelerated acquisition by randomly undersampling the time series. The obtained parcellation are reproducible when analysing data from different sets of individuals, and the estimation is robust to undersampling.","PeriodicalId":198408,"journal":{"name":"2014 22nd European Signal Processing Conference (EUSIPCO)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.44129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a new matrix recovery framework to partition brain activity using time series of resting-state functional Magnetic Resonance Imaging (fMRI). Spatial clusters are obtained with a new low-rank factorization algorithm that offers the ability to add different types of constraints. As an example we add a total variation type cost function in order to exploit neighborhood constraints. We first validate the performance of our algorithm on simulated data, which allows us to show that the neighborhood constraint improves the recovery in noisy or undersampled set-ups. Then we conduct experiments on real-world data, where we simulated an accelerated acquisition by randomly undersampling the time series. The obtained parcellation are reproducible when analysing data from different sets of individuals, and the estimation is robust to undersampling.
脑功能分割的空间约束低秩矩阵分解
我们提出了一种新的矩阵恢复框架,利用静息状态功能磁共振成像(fMRI)的时间序列来划分大脑活动。空间聚类是通过一种新的低秩分解算法获得的,该算法提供了添加不同类型约束的能力。作为一个例子,我们增加了一个总变化类型成本函数,以利用邻域约束。我们首先在模拟数据上验证了算法的性能,这使我们能够证明邻域约束提高了噪声或欠采样设置中的恢复。然后我们在真实世界的数据上进行实验,我们通过随机欠采样时间序列来模拟加速采集。当分析来自不同个体集的数据时,所获得的分割是可重复的,并且估计对欠采样具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信