Engineering Massively Parallel MST Algorithms

P. Sanders, M. Schimek
{"title":"Engineering Massively Parallel MST Algorithms","authors":"P. Sanders, M. Schimek","doi":"10.1109/IPDPS54959.2023.00075","DOIUrl":null,"url":null,"abstract":"We develop and extensively evaluate highly scalable distributed-memory algorithms for computing minimum spanning trees (MSTs). At the heart of our solutions is a scalable variant of Borůvka’s algorithm. For partitioned graphs with many local edges we improve this with an effective form of contracting local parts of the graph during a preprocessing step. We also adapt the filtering concept of the best practical sequential algorithm to develop a massively parallel Filter-Borůvka algorithm that is very useful for graphs with poor locality and high average degree. Our experiments indicate that our algorithms scale well up to at least 65 536 cores and are up to 800 times faster than previous distributed MST algorithms.","PeriodicalId":343684,"journal":{"name":"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS54959.2023.00075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We develop and extensively evaluate highly scalable distributed-memory algorithms for computing minimum spanning trees (MSTs). At the heart of our solutions is a scalable variant of Borůvka’s algorithm. For partitioned graphs with many local edges we improve this with an effective form of contracting local parts of the graph during a preprocessing step. We also adapt the filtering concept of the best practical sequential algorithm to develop a massively parallel Filter-Borůvka algorithm that is very useful for graphs with poor locality and high average degree. Our experiments indicate that our algorithms scale well up to at least 65 536 cores and are up to 800 times faster than previous distributed MST algorithms.
工程大规模并行MST算法
我们开发并广泛评估了用于计算最小生成树(MSTs)的高度可扩展的分布式内存算法。我们解决方案的核心是Borůvka算法的可扩展变体。对于具有许多局部边的分割图,我们通过在预处理步骤中压缩图的局部部分的有效形式改进了这一点。我们还采用了最佳实用顺序算法的过滤概念,开发了一种大规模并行Filter-Borůvka算法,该算法对局域性差和平均度高的图非常有用。我们的实验表明,我们的算法可以很好地扩展到至少65 536个内核,并且比以前的分布式MST算法快800倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信