Mapping-aware Biased Training for Accurate Memristor-based Neural Networks

Sumit Diware, A. Gebregiorgis, R. Joshi, S. Hamdioui, R. Bishnoi
{"title":"Mapping-aware Biased Training for Accurate Memristor-based Neural Networks","authors":"Sumit Diware, A. Gebregiorgis, R. Joshi, S. Hamdioui, R. Bishnoi","doi":"10.1109/AICAS57966.2023.10168661","DOIUrl":null,"url":null,"abstract":"Memristor-based computation-in-memory (CIM) can achieve high energy efficiency by processing the data within the memory, which makes it well-suited for applications like neural networks. However, memristors suffer from conductance variation problem where their programmed conductance values deviate from the desired values. Such variations lead to computational errors that result in degraded inference accuracy in CIM-based neural networks. In this paper, we present a mapping-aware biased training methodology to mitigate the impact of conductance variation on CIM-based neural networks. We first determine which conductance states of the memristor are inherently more immune to variation. The neural network is then trained under the constraint that important weights can only take numeric values which directly get mapped to such favorable states. Simulation results show that our proposed mapping-aware biased training achieves up to 2.4× hardware accuracy compared to the conventional training.","PeriodicalId":296649,"journal":{"name":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS57966.2023.10168661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Memristor-based computation-in-memory (CIM) can achieve high energy efficiency by processing the data within the memory, which makes it well-suited for applications like neural networks. However, memristors suffer from conductance variation problem where their programmed conductance values deviate from the desired values. Such variations lead to computational errors that result in degraded inference accuracy in CIM-based neural networks. In this paper, we present a mapping-aware biased training methodology to mitigate the impact of conductance variation on CIM-based neural networks. We first determine which conductance states of the memristor are inherently more immune to variation. The neural network is then trained under the constraint that important weights can only take numeric values which directly get mapped to such favorable states. Simulation results show that our proposed mapping-aware biased training achieves up to 2.4× hardware accuracy compared to the conventional training.
基于记忆阻器的精确神经网络的映射感知偏差训练
基于忆阻器的内存计算(CIM)可以通过处理内存中的数据来实现高能效,这使得它非常适合神经网络等应用。然而,忆阻器存在电导变化问题,即它们的程序电导值偏离期望值。这种变化会导致计算误差,从而导致基于cim的神经网络的推理精度下降。在本文中,我们提出了一种映射感知偏置训练方法,以减轻电导变化对基于cim的神经网络的影响。我们首先确定记忆电阻器的哪些电导状态本质上更不受变化的影响。然后在重要权重只能取直接映射到这种有利状态的数值的约束下训练神经网络。仿真结果表明,与传统训练相比,我们提出的映射感知偏置训练的硬件精度高达2.4倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信