Analysis of MHT and GBT Approaches to Disparate-Sensor Fusion

C. Carthel, J. LeNoach, S. Coraluppi, A. Willsky, Brandon Bale
{"title":"Analysis of MHT and GBT Approaches to Disparate-Sensor Fusion","authors":"C. Carthel, J. LeNoach, S. Coraluppi, A. Willsky, Brandon Bale","doi":"10.23919/FUSION45008.2020.9190256","DOIUrl":null,"url":null,"abstract":"Multi-sensor multi-target tracking requires the solution to a challenging data association problem. The problem simplifies when a portion of the target state vector and the corresponding sensor data satisfy a particular Markovian assumption. This leads to quantifiable benefits in performance vs. complexity of the tracking solution. This paper summarizes recently-obtained technical advances in graph-based tracking and applies this to a benchmark study with respect to an advanced track-oriented multiple-hypothesis tracking solution.","PeriodicalId":419881,"journal":{"name":"2020 IEEE 23rd International Conference on Information Fusion (FUSION)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 23rd International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/FUSION45008.2020.9190256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Multi-sensor multi-target tracking requires the solution to a challenging data association problem. The problem simplifies when a portion of the target state vector and the corresponding sensor data satisfy a particular Markovian assumption. This leads to quantifiable benefits in performance vs. complexity of the tracking solution. This paper summarizes recently-obtained technical advances in graph-based tracking and applies this to a benchmark study with respect to an advanced track-oriented multiple-hypothesis tracking solution.
差分传感器融合的MHT和GBT方法分析
多传感器多目标跟踪需要解决一个具有挑战性的数据关联问题。当目标状态向量的一部分和相应的传感器数据满足特定的马尔可夫假设时,问题就简化了。这将导致跟踪解决方案在性能和复杂性方面的可量化收益。本文总结了近年来在基于图的跟踪方面取得的技术进展,并将其应用于一种先进的面向跟踪的多假设跟踪方案的基准研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信