D. Sowmya, Vishwas S Hegde, J. Suhas, Raghavendra V Hegdekatte, P. D. Shenoy, K. Venugopal
{"title":"Land Use/ Land Cover Classification of Google Earth Imagery","authors":"D. Sowmya, Vishwas S Hegde, J. Suhas, Raghavendra V Hegdekatte, P. D. Shenoy, K. Venugopal","doi":"10.1109/WIECON-ECE.2017.8468898","DOIUrl":null,"url":null,"abstract":"Google Earth is a source of high spatial resolution images. The freely available Google Earth (GE) images are utilized to generate Land use/Land cover thematic map of the highly heterogeneous landscape of typical urban scene. In this paper, we have presented Euclidean Distance and Average Pixel Intensity based K-NN classification to classify five different land objects. The classification accuracy of the proposed method is compared against generic K-NN. The overall classification accuracy and the kappa value of generic K-NN are found to be 75.04% and 0.74 respectively. Whereas, proposed method results with 76.38% and 0.78. Both the methods exhibits classification error because of poor spectral reflectance properties of google earth imagery.","PeriodicalId":188031,"journal":{"name":"2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIECON-ECE.2017.8468898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Google Earth is a source of high spatial resolution images. The freely available Google Earth (GE) images are utilized to generate Land use/Land cover thematic map of the highly heterogeneous landscape of typical urban scene. In this paper, we have presented Euclidean Distance and Average Pixel Intensity based K-NN classification to classify five different land objects. The classification accuracy of the proposed method is compared against generic K-NN. The overall classification accuracy and the kappa value of generic K-NN are found to be 75.04% and 0.74 respectively. Whereas, proposed method results with 76.38% and 0.78. Both the methods exhibits classification error because of poor spectral reflectance properties of google earth imagery.