Validation Gating for Non-Linear Non-Gaussian Target Tracking

T. Bailey, B. Upcroft, H. Durrant-Whyte
{"title":"Validation Gating for Non-Linear Non-Gaussian Target Tracking","authors":"T. Bailey, B. Upcroft, H. Durrant-Whyte","doi":"10.1109/ICIF.2006.301597","DOIUrl":null,"url":null,"abstract":"This paper develops a general theory of validation gating for non-linear non-Gaussian models. Validation gates are used in target tracking to cull very unlikely measurement-to-track associations, before remaining association ambiguities are handled by a more comprehensive (and expensive) data association scheme. The essential property of a gate is to accept a high percentage of correct associations, thus maximising track accuracy, but provide a sufficiently tight bound to minimise the number of ambiguous associations. For linear Gaussian systems, the ellipsoidal validation gate is standard, and possesses the statistical property whereby a given threshold will accept a certain percentage of true associations. This property does not hold for non-linear non-Gaussian models. As a system departs from linear-Gaussian, the ellipsoid gate tends to reject a higher than expected proportion of correct associations and permit an excess of false ones. In this paper, the concept of the ellipsoidal gate is extended to permit correct statistics for the non-linear non-Gaussian case. The new gate is demonstrated by a bearing-only tracking example","PeriodicalId":248061,"journal":{"name":"2006 9th International Conference on Information Fusion","volume":"2016 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 9th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2006.301597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

This paper develops a general theory of validation gating for non-linear non-Gaussian models. Validation gates are used in target tracking to cull very unlikely measurement-to-track associations, before remaining association ambiguities are handled by a more comprehensive (and expensive) data association scheme. The essential property of a gate is to accept a high percentage of correct associations, thus maximising track accuracy, but provide a sufficiently tight bound to minimise the number of ambiguous associations. For linear Gaussian systems, the ellipsoidal validation gate is standard, and possesses the statistical property whereby a given threshold will accept a certain percentage of true associations. This property does not hold for non-linear non-Gaussian models. As a system departs from linear-Gaussian, the ellipsoid gate tends to reject a higher than expected proportion of correct associations and permit an excess of false ones. In this paper, the concept of the ellipsoidal gate is extended to permit correct statistics for the non-linear non-Gaussian case. The new gate is demonstrated by a bearing-only tracking example
非线性非高斯目标跟踪的验证门控
本文提出了非线性非高斯模型验证门控的一般理论。在目标跟踪中使用验证门来剔除非常不可能的测量到跟踪关联,然后由更全面(和昂贵)的数据关联方案处理剩余的关联歧义。门的基本属性是接受高比例的正确关联,从而最大化跟踪精度,但提供足够紧密的绑定以最小化模糊关联的数量。对于线性高斯系统,椭球验证门是标准的,并且具有统计特性,即给定的阈值将接受一定百分比的真实关联。这个性质不适用于非线性非高斯模型。当系统偏离线性高斯时,椭球门倾向于拒绝高于预期比例的正确关联,并允许过量的错误关联。本文对椭球门的概念进行了扩展,使其能够对非线性非高斯情况进行正确的统计。通过一个纯方位跟踪的实例对新门进行了验证
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信