A New Algorithm for Fuzzy Clustering Able to Find the Optimal Number of Clusters

Balkis Abidi, S. Yahia, A. Bouzeghoub
{"title":"A New Algorithm for Fuzzy Clustering Able to Find the Optimal Number of Clusters","authors":"Balkis Abidi, S. Yahia, A. Bouzeghoub","doi":"10.1109/ICTAI.2012.174","DOIUrl":null,"url":null,"abstract":"Tackling, within a classification task, to the problem of inaccuracy explains the development of new theories that offer a formal treatment of imprecise information, especially the theory of fuzzy sets who suggested a new approach taking advantage of the concept of membership function. Nevertheless, clustering algorithms still show limits, particularly for the estimation of the number of clusters. In this paper, through a state of the art of the main fuzzy classification algorithms, we introduce a new algorithm, called Fuzzy-MSOM. The latter aims at palliating to drawback of the determination of the suitable number of clusters in a given data set. Thus, the clustering process is carried out through a multi-level approach. Through the use of fuzzy clustering validity indices, Fuzzy-MSOM overcomes the problem of the estimation of clusters number. The experimental result shows that the proposed clustering technique provides better results compared to the previous algorithms.","PeriodicalId":155588,"journal":{"name":"2012 IEEE 24th International Conference on Tools with Artificial Intelligence","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 24th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2012.174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Tackling, within a classification task, to the problem of inaccuracy explains the development of new theories that offer a formal treatment of imprecise information, especially the theory of fuzzy sets who suggested a new approach taking advantage of the concept of membership function. Nevertheless, clustering algorithms still show limits, particularly for the estimation of the number of clusters. In this paper, through a state of the art of the main fuzzy classification algorithms, we introduce a new algorithm, called Fuzzy-MSOM. The latter aims at palliating to drawback of the determination of the suitable number of clusters in a given data set. Thus, the clustering process is carried out through a multi-level approach. Through the use of fuzzy clustering validity indices, Fuzzy-MSOM overcomes the problem of the estimation of clusters number. The experimental result shows that the proposed clustering technique provides better results compared to the previous algorithms.
一种能找到最优聚类数的模糊聚类新算法
在分类任务中,解决不准确问题解释了新理论的发展,这些理论提供了对不精确信息的正式处理,特别是模糊集理论,它提出了利用隶属函数概念的新方法。然而,聚类算法仍然显示出局限性,特别是对于聚类数量的估计。本文通过对目前主要模糊分类算法的研究现状,介绍了一种新的模糊分类算法fuzzy - msom。后者旨在减轻在给定数据集中确定适当数量的聚类的缺点。因此,聚类过程是通过多层次的方法进行的。通过使用模糊聚类有效性指标,fuzzy - msom克服了聚类数估计的问题。实验结果表明,本文提出的聚类方法比以往的算法具有更好的聚类效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信