Absolute stability analysis of multivariable regulators through the Popov criterion

J. D. da Cruz, J. Geromel
{"title":"Absolute stability analysis of multivariable regulators through the Popov criterion","authors":"J. D. da Cruz, J. Geromel","doi":"10.1109/CDC.1988.194721","DOIUrl":null,"url":null,"abstract":"The multivariable Popov criterion is used to derive the sectors of absolute stability for two classes of regulators in both the continuous and discrete-time cases. The first class corresponds to the well known linear quadratic regulators; in the second one a feedback control law depending on the solution of a Lyapunov equation is considered. Relatively simple reasoning shows that the absolute stability analysis can be accomplished in the frequency domain. To carry this out, necessary conditions for a given matrix transfer function to represent a specific regulator are established. It is shown that the necessary conditions play the same role in the absolute stability context as the Kalman frequency-domain equality does with respect to stability margins.<<ETX>>","PeriodicalId":113534,"journal":{"name":"Proceedings of the 27th IEEE Conference on Decision and Control","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1988.194721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The multivariable Popov criterion is used to derive the sectors of absolute stability for two classes of regulators in both the continuous and discrete-time cases. The first class corresponds to the well known linear quadratic regulators; in the second one a feedback control law depending on the solution of a Lyapunov equation is considered. Relatively simple reasoning shows that the absolute stability analysis can be accomplished in the frequency domain. To carry this out, necessary conditions for a given matrix transfer function to represent a specific regulator are established. It is shown that the necessary conditions play the same role in the absolute stability context as the Kalman frequency-domain equality does with respect to stability margins.<>
用波波夫准则分析多变量调节器的绝对稳定性
利用多变量波波夫判据导出了连续和离散情况下两类调节器的绝对稳定扇区。第一类对应于众所周知的线性二次型调节器;第二种方法是考虑基于Lyapunov方程解的反馈控制律。相对简单的推理表明,绝对稳定性分析可以在频域完成。为了实现这一点,建立了给定矩阵传递函数表示特定调节器的必要条件。结果表明,在绝对稳定性情况下,必要条件的作用与卡尔曼频域等式在稳定性裕度方面的作用相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信