An Effective Heart Disease Prediction Model Based on Machine Learning Techniques

R. Ripan, Iqbal H. Sarker, Md. Hasan Furhad, M. Anwar, M. M. Hoque
{"title":"An Effective Heart Disease Prediction Model Based on Machine Learning Techniques","authors":"R. Ripan, Iqbal H. Sarker, Md. Hasan Furhad, M. Anwar, M. M. Hoque","doi":"10.20944/preprints202011.0744.v1","DOIUrl":null,"url":null,"abstract":"This paper presents an effective heart disease prediction model through detecting the anomalies, also known as outliers, in healthcare data using the unsupervised K-means clustering algorithm. Most existing approaches for detecting anomalies are based on constructing profiles of normal instances. However, such techniques require an adequate number of normal profiles to justify those models. Our proposed model first evaluates an \\textit{optimal} value of K using Silhouette method. Next, it intends to locate anomalies that are far from a certain threshold distance with respect to their clusters. Finally, the five most popular classification techniques such as K-Nearest Neighbor (KNN), Random Forest (RF), Support Vector Machines (SVM), Naive Bayes (NB), and Logistic Regression (LR) are applied to build the resultant prediction model. The effectiveness of the proposed methodology is justified using a benchmark dataset of heart disease.","PeriodicalId":215912,"journal":{"name":"International Conference on Health Information Science","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Health Information Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20944/preprints202011.0744.v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents an effective heart disease prediction model through detecting the anomalies, also known as outliers, in healthcare data using the unsupervised K-means clustering algorithm. Most existing approaches for detecting anomalies are based on constructing profiles of normal instances. However, such techniques require an adequate number of normal profiles to justify those models. Our proposed model first evaluates an \textit{optimal} value of K using Silhouette method. Next, it intends to locate anomalies that are far from a certain threshold distance with respect to their clusters. Finally, the five most popular classification techniques such as K-Nearest Neighbor (KNN), Random Forest (RF), Support Vector Machines (SVM), Naive Bayes (NB), and Logistic Regression (LR) are applied to build the resultant prediction model. The effectiveness of the proposed methodology is justified using a benchmark dataset of heart disease.
一种基于机器学习技术的有效心脏病预测模型
本文通过使用无监督K-means聚类算法检测医疗数据中的异常(也称为异常值),提出了一种有效的心脏病预测模型。大多数现有的异常检测方法都是基于构造正常实例的剖面。然而,这种技术需要足够数量的正常概况来证明这些模型的合理性。我们提出的模型首先使用Silhouette方法评估K的\textit{最优}值。接下来,它打算定位相对于它们的集群远离某个阈值距离的异常。最后,应用k -最近邻(KNN)、随机森林(RF)、支持向量机(SVM)、朴素贝叶斯(NB)和逻辑回归(LR)等五种最流行的分类技术来构建最终的预测模型。使用心脏病基准数据集证明了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信