Constrained Motion Particle Swarm Optimization and Support Vector Regression for Non-linear Time Series Regression and Prediction Applications

N. Sapankevych, R. Sankar
{"title":"Constrained Motion Particle Swarm Optimization and Support Vector Regression for Non-linear Time Series Regression and Prediction Applications","authors":"N. Sapankevych, R. Sankar","doi":"10.1109/ICMLA.2013.164","DOIUrl":null,"url":null,"abstract":"Support Vector Regression (SVR) has been applied to many non-linear time series prediction applications [1]. There are many challenges associated with the use of SVR for non-linear time series prediction, including the selection of free parameters associated with SVR training. To optimize SVR free parameters, many different approaches have been investigated, including Particle Swarm Optimization (PSO). This paper proposes a new approach, termed Constrained Motion Particle Swarm Optimization (CMPSO), which selects SVR free parameters and solves the SVR quadratic programming (QP) problem simultaneously. To benchmark the performance of CMPSO, Mackey-Glass non-linear time series data is used for validation. Results show CMPSO performance is consistent with other time series prediction methodologies, and in some cases superior.","PeriodicalId":168867,"journal":{"name":"2013 12th International Conference on Machine Learning and Applications","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 12th International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2013.164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Support Vector Regression (SVR) has been applied to many non-linear time series prediction applications [1]. There are many challenges associated with the use of SVR for non-linear time series prediction, including the selection of free parameters associated with SVR training. To optimize SVR free parameters, many different approaches have been investigated, including Particle Swarm Optimization (PSO). This paper proposes a new approach, termed Constrained Motion Particle Swarm Optimization (CMPSO), which selects SVR free parameters and solves the SVR quadratic programming (QP) problem simultaneously. To benchmark the performance of CMPSO, Mackey-Glass non-linear time series data is used for validation. Results show CMPSO performance is consistent with other time series prediction methodologies, and in some cases superior.
约束运动粒子群优化与支持向量回归在非线性时间序列回归与预测中的应用
支持向量回归(SVR)已应用于许多非线性时间序列预测应用[1]。使用SVR进行非线性时间序列预测存在许多挑战,包括与SVR训练相关的自由参数的选择。为了优化支持向量机的自由参数,人们研究了许多不同的方法,其中包括粒子群算法(PSO)。本文提出了一种约束运动粒子群优化算法(CMPSO),该算法选择支持向量机的自由参数,同时求解支持向量机的二次规划问题。为了对CMPSO的性能进行基准测试,使用了Mackey-Glass非线性时间序列数据进行验证。结果表明,CMPSO的性能与其他时间序列预测方法一致,在某些情况下优于其他时间序列预测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信