Kyungkyu Min, I. Kwon, S.-H. Cho, Mikyung Kwon, T. Jang, Tae-Kyung Oh, Yong-Taik Kim, S. Cha, Sung-Kye Park, Sung-Joo Hong
{"title":"Study on the Sub-Threshold Margin Characteristics of the Extremely Scaled 3-D DRAM Cell Transistors","authors":"Kyungkyu Min, I. Kwon, S.-H. Cho, Mikyung Kwon, T. Jang, Tae-Kyung Oh, Yong-Taik Kim, S. Cha, Sung-Kye Park, Sung-Joo Hong","doi":"10.1109/IMW.2015.7150305","DOIUrl":null,"url":null,"abstract":"This paper proposes an equivalent circuit model of 3-D DRAM cell transistors with recess gate and saddle fin structure for the first time. The model effectively characterize the sub-threshold and off margin behavior of the scaled DRAM cell transistor by considering the parasitic sub-channel and vertical transistor components into account. TCAD simulation and experimental data have confirmed the accuracy of the model. With the analysis made, we suggest a set of improvement method for the off margin characteristics engineering. These methods are believed to lead the continuous DRAM scaling, down to sub-10nm technology node.","PeriodicalId":107437,"journal":{"name":"2015 IEEE International Memory Workshop (IMW)","volume":"05 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Memory Workshop (IMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMW.2015.7150305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper proposes an equivalent circuit model of 3-D DRAM cell transistors with recess gate and saddle fin structure for the first time. The model effectively characterize the sub-threshold and off margin behavior of the scaled DRAM cell transistor by considering the parasitic sub-channel and vertical transistor components into account. TCAD simulation and experimental data have confirmed the accuracy of the model. With the analysis made, we suggest a set of improvement method for the off margin characteristics engineering. These methods are believed to lead the continuous DRAM scaling, down to sub-10nm technology node.