An Automated Flow for Configuration and Generation of CNN based AI accelerators for HW Emulation & FPGA Prototyping

Ahmed Nasser, Karim Ahmed Fadel, Karim Abbas, K. Ahmed, Mohamed Abdelsalam, Mahmoud Gaber
{"title":"An Automated Flow for Configuration and Generation of CNN based AI accelerators for HW Emulation & FPGA Prototyping","authors":"Ahmed Nasser, Karim Ahmed Fadel, Karim Abbas, K. Ahmed, Mohamed Abdelsalam, Mahmoud Gaber","doi":"10.1109/icecs53924.2021.9665606","DOIUrl":null,"url":null,"abstract":"Machine learning (ML) algorithms have proven to be a concrete component in various fields that aim to be fully automated. Therefore, many researchers have shed the light on the modifications of ML algorithms to be fully automated for more complicated tasks. However, the acceleration of such algorithms is extremely hard due to the high computations and memory required. This paper implements automated flow using Perl scripts and generated LeNet-5 (A Convolutional Neural Network Model). Our target is high throughput, configurable and scalable RTL design that is generated by Perl scripts. Our flow is designing and verifying using Veloce emulator.","PeriodicalId":448558,"journal":{"name":"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icecs53924.2021.9665606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning (ML) algorithms have proven to be a concrete component in various fields that aim to be fully automated. Therefore, many researchers have shed the light on the modifications of ML algorithms to be fully automated for more complicated tasks. However, the acceleration of such algorithms is extremely hard due to the high computations and memory required. This paper implements automated flow using Perl scripts and generated LeNet-5 (A Convolutional Neural Network Model). Our target is high throughput, configurable and scalable RTL design that is generated by Perl scripts. Our flow is designing and verifying using Veloce emulator.
基于CNN的人工智能加速器在硬件仿真和FPGA原型中的自动配置和生成流程
机器学习(ML)算法已被证明是旨在实现完全自动化的各个领域的具体组成部分。因此,许多研究人员已经阐明了对ML算法的修改,以便在更复杂的任务中完全自动化。然而,由于需要大量的计算和内存,这种算法的加速是非常困难的。本文使用Perl脚本实现了自动化流程,并生成了LeNet-5(一种卷积神经网络模型)。我们的目标是由Perl脚本生成的高吞吐量、可配置和可扩展的RTL设计。我们的流程是使用Veloce仿真器进行设计和验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信